

[School]
[Course title]

[DOCUMENT TITLE]
[Document subtitle]

asdasdasd

Shayan Ahmed Khan
Sr. Threat Researcher

[LinkedIn]
[Medium]
[Github]
[Website]

https://www.linkedin.com/in/shayan-ahmed-khan-517168120/
https://medium.com/@shaddy43
https://github.com/shaddy43/MalwareAnalysisSeries
https://shaddy43.github.io/MalwareAnalysisSeries/

Cracked Haven! Why you should avoid using

cracked software and how to check their

integrity?

In this age of digital world, everything depends on software. From communication to management

to business and operation, software is now an integral part of the modern world. While some of

these software are free and open-source while others are sold as a product to the customers and

whenever there is money involved in any business, a form of piracy emerges. Software piracy has

become very common. Let’s be honest we all have used a pirated software in our lives more than

once. While there is a huge joy in getting a free cracked version of an invaluable product, there are

some risks associated with it. A cracked software might contain harmful arbitrary code in it. Since,

it is users own choice to install a cracked software therefore hacking that user is very very easy. In

this blog we will look at how software is being cracked, we will check the integrity of cracked

software to see whether they contain anything malicious or harmful in it and finally we will try to

add our own arbitrary code inside the cracked software to show how easy it is for software pirates

to hack the users who are using their cracked products.

I will demonstrate the example of a cracked Adobe Photoshop CS6, that I found from a pirated

website. I will show how this software has been cracked, and I will check the integrity of this

cracked software that will ensure if anything malicious had been added in the crack or not. For

clearly understanding this blog, you need to have a background knowledge of reverse engineering,

x86–64 assembly language, Windows APIs, disassembler tools like IDA pro, and basic knowledge

of binary patches and binary patch diffing.

Disclaimer: Before moving on to the blog. I want to clarify one thing. This is only for

educational purposes. I do not support piracy in any case. I do not want my blog to be used

for illegitimate purposes. Everything that you do, it is your sole responsibility.

In my foolish younger years before coming to the cybersecurity I’ve been using a cracked

Photoshop for many years. I decided to check its integrity and to found out if I was hacked in any

case using that crack. Since, I have been working on finding zero-days and 1-day vulnerabilities

using the methodology of root cause analysis, therefore the first thing that came to my mind is to

check the difference between the official version and the cracked version. I’m using IDA pro as

my main disassembler and an added plugin called BinDiff for binary diffing. IDA pro is a

commercial software and it is very expensive, but there is also a free version available which is

called IDA Freeware. In this exercise we are using the free version only.

https://googleprojectzero.github.io/0days-in-the-wild/rca.html
https://hex-rays.com/IDA-pro/
https://www.zynamics.com/bindiff.html

Binary Patch Diffing of benign and cracked amtlib.dll

In photoshop CS6 amtlib.dll is the library that is used for validating licenses and for cracking

photoshop, you just need to replace this library with the cracked library. But how to be sure that

there is no harmful code in the cracked version? Well, using the technique of binary patch diffing

by the plugin BinDiff by zynamics, I’ve found that only two functions were changed that are

shown in the screenshot above. So, by comparing the changes made in these two functions we can

find out how the software was cracked. A side-by-side comparison of both functions is listed in

the screenshot below:

Comparison of changed function 1 of the cracked binary

As you can see in the official version the CFG shows a series of different code blocks executing

after checking different conditions but on the other side in the cracked binary, there is a simple

piece of code that is always returning 1 and no licenses are being validated. Let’s look at the other

function that was changed in the cracked binary.

Comparison of changed function 2 of the cracked binary

Similarly in the second function, the cracked binary is always returning 0 without checking any

conditions. Looks like this function is a pre-condition before validating the licenses. So for the

other function to execute, this function must return 0, therefore in the cracked version it is always

returning 0. Luckily this crack doesn’t have any harmful code added in it which I have been

using in the past. Using a cracked software is never a good idea, because it has been tampered with

and attacker can add anything in it. We can check the integrity of cracked software by using the

technique of binary patch diffing as demonstrated in the example above.

Now I will demonstrate why using a cracked software is dangerous and how easy a user can be

hacked with the help of cracked software. We know what functions are used for the crack; we now

understand how the crack works. Follow me through this blog to see why a cracked software is

harmful for you. I will take the official benign binary and crack it but also add some harmful code

in it. The functions that I need to crack are:

1. AMTPreValidateProductLicense

2. Sub_180088520

I will first crack the second function sub_180088520. It is very simple; I just need to return 0 in

this function. For that I will use IDA freeware’s built-in assembler. However, IDA is not such a

good assembler or patcher. There are better tools for patching binaries then IDA, but I am used to

working with IDA pro and freeware. The assembler of IDA is limited to the IBM pc only but we

can apply patches in bytes or word.

IDA pro assembler instruction limitation

For sub_180088520, cracking is very simple, I just needed to assemble instructions using the built-

in IDA freeware assembler so that the return value is set to 0. As we all know that the return

register is always rax or its counterpart eax for 32-bit value. So, I assembled the value of eax to

xor with itself. Anything xor with itself results in the value of 0. And then return instruction will

give control back to where this function was called from with the return value 0. See the screenshot

below to understand:

https://www.hex-rays.com/products/ida/support/idadoc/526.shtml

Cracking 2nd function in IDA pro

Now cracking the first function is also very easy, we just need to return always 1 value. Same

approach can be applied to it, instead of xoring we just need to move an immediate value 1 in the

eax register and return. But I’m demonstrating how a hacker and software cracker can add

harmful code in a cracked binary. So, I decided to do something extra with the first function. I

looked at all the imports that this binary is using and I saw a message box import as well. I decided

to show a message box whenever this cracked binary is used. For using an API import there

are some requirements:

1. Must know the address of API import

2. Must calculate the offset of calling that API import

3. Must push all the parameters onto the stack frame

4. Avoid corrupting stack frames by equal pushing and poping

5. Must calculate offset for the string values used for parameters

6. Calculate opcodes for machine instructions because we must change bytes

For calling any instruction, we need its opcode because we cannot directly assemble an instruction

in IDA freeware or pro because of its assembler limitations. There is a way to calculate opcodes

for every instruction, but I prefer doing smart way. I write the code in visual studio and

disassemble it to know its opcodes or for complex code I also write the code in assembly and

using MASM assembler I debug and find its opcode. This is a very simple example of just calling

a message box therefore I will write code in basic c instead of assembly language.

Opcodes generated by visual studio debugger

In the screenshot above, all the opcodes needed for calling message box API are generated by the

visual studio debugger. We can get the idea of how to change bytes using this approach. I will

patch the first instruction that is xor r9d, r9d and the opcode for this instruction is 45 33 C9. This

is the first parameter for message box API and I’m passing it a value of 0 by xoring r9d register.

Patching instructions using opcodes in Hex-View

One thing of IDA pro or freeware is very good that it gives us live mapping of every instruction in

the Hex-format as well. Just click on the instruction you want to see in hex and change tab from

IDA view to Hex-view. I edited the bytes that were mapped on the instruction that I wanted to

change and saved the IDA image. In the 3rd section of this screenshot, you can see the instruction

has been changed to whatever we wanted. I will use same approach for patching other instructions

as well. For the second instruction I needed to create a string variable in the data section that must

be called in a register as second parameter. So, I found an empty buffer space in data section and

edited those empty bytes with the bytes that I wanted as my string. In the screenshot below you

will understand how to create variables.

Creating variables for parameters to be used for Message Box

I created two variables at an empty buffer in the data segment of this binary. One of the variables

is used for text shown inside a message box and other variable is used for caption of the message

box. Creating these variables is very easy, just find an empty buffer address and change bytes from

the edit menu. As shown in the screenshot above, you can patch bytes and save the data that you

want to save which in this case is the hex of strings that I want to save. You must also keep in

mind the variable types being used here. Message box API uses wide strings therefore I’ve

converted my variable to the Unicode 16-bit style instead of Ascii that are 8-bits. The hotkey for

defining string literals is ALT + A.

I’ve defined the string variables, now the remaining task is to load these offset values in registers

used for passing parameters. For that I will provide a simple formula:

Offset = (callee_address - caller_address - instruction size)

My string text is on the address 180228EED which is callee_address. The address from which I

want to call and save it in register is on the address 18009DAD9 and the instruction size is 7. Put

the values in the formula and we get the offset address that is 18B40D. From the opcodes generated

by the Visual studio, I know the opcode for lea starts with 48 8D, 15 is the register in which the

value must be moved and rest is the offset address in little Endian format. So, the complete opcode

for the instruction: lea rdx, offset:text is 48 8D 15 0D B4 18 00. I will save both strings in registers

by calculating their offset values and saving in registers using the LEA instruction as shown in the

screenshots below:

Instructions for loading offset value in registers

Opcodes for lea from offset value

The last parameter is also 0, so it is easy to assemble. Simply xor the register with itself and 0 will

be saved in that register. The last step is to call the message box API. The method for calling it

will be same. Need to calculate the offset value and call the API using the opcode for call

instruction. The offset that I calculated is 0F8AF0 and the opcode for call instruction is FF 15,

put it together and we can call the message box API using the opcode as shown in the screenshot

below:

Instruction patched for calling Windows API imports

Rest of the instructions that were in this function, I simply patched those with NOP instruction

which literally means no operation. After calling the Message box API, I’ve added crack as well

which in this case is to return value 1 whenever this function has been called. Then I patched the

binary file by applying patched from the edit menu and replaced the official binary with my version

of patched binary. Let’s see what happens when photoshop is opened.

Cracked photoshop with included code execution

As shown in the screenshot and video above, cracked photoshop pops open a message box

whenever the application is launched. The alert says Beware, You have been hacked !!! This is

just for proving my point that any kind of code can be executed in the backend when a cracked

software is used.

Conclusion

Software piracy is very common these days. Even we as software consumers often prefer a cracked

software because it’s free of cost. However, using a cracked software could be very dangerous. As

I have shown in my article, how hackers can easily add malicious code inside a cracked software

that will be executed at the back end without user even noticing a thing. Like in this example, what

if I called a ShellExecute API or WinExec API or any other API used for creating processes? A

simple parameter to these APIs could download and execute another malware on the system

whenever this application is opened. You should avoid using cracked software and always go for

the premium product from a trusted official vendor.

