Shagan Ahmed Khan

Sr. Threat Researcher

[LinkedIin]
[Medium]
[Githubl]

[Website]

https://www.linkedin.com/in/shayan-ahmed-khan-517168120/
https://medium.com/@shaddy43
https://github.com/shaddy43/MalwareAnalysisSeries
https://shaddy43.github.io/MalwareAnalysisSeries/

Cracked Haven! Why you should avoid using
cracked software and how to check their
integrity?

In this age of digital world, everything depends on software. From communication to management
to business and operation, software is now an integral part of the modern world. While some of
these software are free and open-source while others are sold as a product to the customers and
whenever there is money involved in any business, a form of piracy emerges. Software piracy has
become very common. Let’s be honest we all have used a pirated software in our lives more than
once. While there is a huge joy in getting a free cracked version of an invaluable product, there are
some risks associated with it. A cracked software might contain harmful arbitrary code in it. Since,
it is users own choice to install a cracked software therefore hacking that user is very very easy. In
this blog we will look at how software is being cracked, we will check the integrity of cracked
software to see whether they contain anything malicious or harmful in it and finally we will try to
add our own arbitrary code inside the cracked software to show how easy it is for software pirates
to hack the users who are using their cracked products.

I will demonstrate the example of a cracked Adobe Photoshop CS6, that | found from a pirated
website. | will show how this software has been cracked, and | will check the integrity of this
cracked software that will ensure if anything malicious had been added in the crack or not. For
clearly understanding this blog, you need to have a background knowledge of reverse engineering,
x86-64 assembly language, Windows APIs, disassembler tools like IDA pro, and basic knowledge
of binary patches and binary patch diffing.

Disclaimer: Before moving on to the blog. I want to clarify one thing. This is only for
educational purposes. | do not support piracy in any case. I do not want my blog to be used
for illegitimate purposes. Everything that you do, it is your sole responsibility.

In my foolish younger years before coming to the cybersecurity I’ve been using a cracked
Photoshop for many years. | decided to check its integrity and to found out if I was hacked in any
case using that crack. Since, | have been working on finding zero-days and 1-day vulnerabilities
using the methodology of root cause analysis, therefore the first thing that came to my mind is to
check the difference between the official version and the cracked version. I’'m using IDA pro as
my main disassembler and an added plugin called BinDiff for binary diffing. IDA pro is a
commercial software and it is very expensive, but there is also a free version available which is
called IDA Freeware. In this exercise we are using the free version only.

https://googleprojectzero.github.io/0days-in-the-wild/rca.html
https://hex-rays.com/IDA-pro/
https://www.zynamics.com/bindiff.html

[File Eait Jump Search View Debugger Options Windows Help

I;:m_l |Ill—

7] Functions 0 6 x| WMrnchedrn. B3 Wormaryoms (3 Moo £ Woeondoryurs £ Bmoav. 1 T @ B 8 He. B &
EA Secondary Name Secondary

7] sub_120001250
7] sub_120001330
771 sub_1300013F0
7] sub_120001410
7] sub_180001430
7] sub_1200014A0
7] sub_1800014C0
77 sub_ 130001460

Line 5453 of 5453
I Gragh overview

|5 vzt

Loading results...
done (1.60s)
Loading incomplete flow graphs

Binary Patch Diffing of benign and cracked amtlib.dll

In photoshop CS6 amtlib.dll is the library that is used for validating licenses and for cracking
photoshop, you just need to replace this library with the cracked library. But how to be sure that
there is no harmful code in the cracked version? Well, using the technique of binary patch diffing
by the plugin BinDiff by zynamics, I’ve found that only two functions were changed that are
shown in the screenshot above. So, by comparing the changes made in these two functions we can
find out how the software was cracked. A side-by-side comparison of both functions is listed in
the screenshot below:

PE e &% & 3 o @0 @Al X p D v Mo E e RS S e R0 X D 2@

S T O O W NV N T Y O | [| MW Ty -
Lbrary functon [l feguer fincton [l tnstruction [0 Gata [Unexpiored 1] External symbel [l Luming fincton ! brary functon [l Regier fncton [l instruction [Gata [Unesiored [Extermal symbal [l Luming functon

Nt 0 6 x| Boe 0 Bre @ B0 Dol Ged Fed |[Peio s < Do D Swe @ B0 e Ge.0 Fed

Fungtes mame A Fungtss mame A
7 sk 1000030 OFFICIAL 2] AMTPreValidste CRACKED
7 sk 1BOOIDOED [7] AMTGeslibiersics
7] s HE0SDATE [aMTPiugPiugRac
7 sk 1EO0SDIT0 [AbABGesP aeralEl
(7 sub_ 186050280 AW eaPreductt =
%:m-l o E'-ﬂ I" 74 : Exported emkry 7. &TPrevalidatePredustiicense
7 1k 150090300 [F] amamResieeadel
T s 1009D3ED 7] ameeneprcs peblic AMTPeevalidateProductii
B ic AMIPreVa latel uctl icense
; x-:m g ::“T;g:;:;pn AHTPrevalidateProdustiicense prod near
1 L EOORDESD J L] L= eax, 1
7 sub 100030680 [7] sub_1500SE6B0 retn
7] sk 1E00S0TO0 71 s 1oAY ATPrevalidsterroductiicense endp
m ", P o < *
: % AMT

:.ﬁanhn & x

ul
a:
[EXS
E—. 1
[1
£L.208 442,13) (88,333) DOOSCEDE 0OPO0001A00S0ADE: AMTI (Symchronized with Haz 00,008 (=81, =53] [44,329) GOOSCEDS OOD00O0LIOISNAD: AM (Synchreoized witk N
0 & x| cusut o & =
Usimg FLIRT signature: Microsoft WisualC v7/14 Gabit runtize ~ | Wex-Rays Deccmpiler plegin has been loaded (w7.6, 0, 200525)
Prepagating type infesmation. .. Licenze: (R-0B00-PO0R-BD (@ user)
Fumction argusent Lnformation has been propagated The decospilation hothey 1s F5.
The initial autoanalysis has been finlshed. X, Flease check the Edit/Plugins menu for more informaton.
e ==
| ST Ridk: Lucoe Lage s pon Ridk: lucoe

Comparison of changed function 1 of the cracked binary

As you can see in the official version the CFG shows a series of different code blocks executing
after checking different conditions but on the other side in the cracked binary, there is a simple
piece of code that is always returning 1 and no licenses are being validated. Let’s look at the other
function that was changed in the cracked binary.

File £di Jump Search View Debugger Optwen Windews Help

BE e B S 6 D0 AP AEX D WA H e NG S) o DO AP -SEX > D @

& (IO NN YR VA | NS O | ANV NTHY [% | (0 N MO0 I 1 O T OO) | 11T i =
Lirary functiory [l Reguler Snctiny [l Instruction [0 Data [Unespiored [External symbel Bl Lurming incten Lirary functiory [l Reguler Snctiony Il Instruction [0 Data [Unespiored [External symbel Bl Larming fincten
frnee 0 # =| Boa. B Dree B He.D e fw.D Fe b |[fArmeo # =| Boa. B Hree B e o0 fw.D Fe
Functienname - b LERQSEEZD proc nesr Functicn name B
7]t 180023040 var_38e quord pre .38 I [£] st 18002610
T st 1EO02A2BD var_38e quord pre -30m OFFICIAL [st 1 EOOEEFDD CRACKED
T sk LEOCREETD var_2Bs geord ptr -Ish [suabs_VBOCATEAD
7] st 1BOBEEDD var_tiim quard ptr -29h [7] sube_1BO0ATECD
e arg_i= guord prre & Rlf ==
Z s LEOCHTESD (arg_B= dwerd pre L Z s LECCHTICO
7 sk 1EOCHTEC arg_ Lo quord ptr 12% [7] sub_teotaracs
7 b 1200877C0 [st 1200ama00 sub_130GEEE30 pres mear
7 sk 1B00872C0 ::: :‘:“;‘ (] st 180028010 ’r":: L L
(7| 3o 1E0CRTADD push rdi [st 150025390 sub_1BReEs520 endp
T st 1EOOESNI0 sub rsg, 4oh [st 1EOCEE300
7] st 1EO0SE300 ook [7] sub_tB0038520
oy [FEX
7] sub_ 150025400 test tﬂ.l!: edx ? =t Im) i
(7] sub_thoOAES™) v jnz shere loc_iseesssial T
5 T suib_1B0033520
Lrub_ 180035520 T dhGrach O F =
ca rsi, abbtain i "Oatain®
= shart o< _16MEE54F T 180088534
lea rax, avalidat 4 "validat™
lea rsi, aPrevalidat ; “Frevalidat™
mn e, 2
<movi rEi, rox
2 150,008 (347, €3] (463, 495) OCSETEZ0 OOOOOOLIGIEEERN: su |Synchresized with B 100,008 (-184, 731 (45, 336) 03087520 : t2ed vith
5] outut 0 & x |5 oust o0& x
Usirg FLIRT siganture: Micraseft Vitunll wT/14 64bit runtise "o | Hex-Rays becespiler plugin has been loaded (vl.6.0.230525) r
Propagating type information... License! 09-0BD-DODG-BR (B user)
Function argusent informstion has been propspeted The decospilation hothey 1s F3.
The initial swtosnalysis has been Finished. ¥ Flease check the Edit/*lugins menu for sore inforsaten. b
e | [||
T SRS L R SRS

Comparison of changed function 2 of the cracked binary

Similarly in the second function, the cracked binary is always returning 0 without checking any
conditions. Looks like this function is a pre-condition before validating the licenses. So for the

other function to execute, this function must return 0, therefore in the cracked version it is always
returning 0. Luckily this crack doesn’t have any harmful code added in it which | have been
using in the past. Using a cracked software is never a good idea, because it has been tampered with
and attacker can add anything in it. We can check the integrity of cracked software by using the
technique of binary patch diffing as demonstrated in the example above.

Now I will demonstrate why using a cracked software is dangerous and how easy a user can be
hacked with the help of cracked software. We know what functions are used for the crack; we now
understand how the crack works. Follow me through this blog to see why a cracked software is
harmful for you. I will take the official benign binary and crack it but also add some harmful code
in it. The functions that | need to crack are:

1. AMTPreValidateProductLicense
2. Sub 180088520

I will first crack the second function sub_180088520. It is very simple; | just need to return 0 in
this function. For that I will use IDA freeware’s built-in assembler. However, IDA is not such a
good assembler or patcher. There are better tools for patching binaries then IDA, but | am used to
working with IDA pro and freeware. The assembler of IDA is limited to the IBM pc only but we
can apply patches in bytes or word.

< ™S hGX‘mys Products > Solutions Partners Shop Support > Company >

You are here. ex 1 >

This submenu allows you 10 patch the image of the input fite. More precisely. IDA never modifies the input file. The image of the input file which was loaded 10 the
database will be modified
You can modity the image of the input tile:

- change a byte
- change a word

| - enter an assembler instruction (only for I8M PC) |

IDA pro assembler instruction limitation

For sub_180088520, cracking is very simple, | just needed to assemble instructions using the built-
in IDA freeware assembler so that the return value is set to 0. As we all know that the return
register is always rax or its counterpart eax for 32-bit value. So, I assembled the value of eax to
xor with itself. Anything xor with itself results in the value of 0. And then return instruction will
give control back to where this function was called from with the return value 0. See the screenshot
below to understand:

https://www.hex-rays.com/products/ida/support/idadoc/526.shtml

Fle | Edit | Jump Sesrch Wesw Debugger Options Wimdoas Help
% [copy Cirde € sa B phehet X b D O |l Wndws debogoer ~| Te || {7 B F*
3 e cecin Bt |ENNREN | Y T NN OOV | | ([I
i Select all zen 10 Data [Ureplored | Exteral systol [l Lumina funciion
identi# e Enit - el - - et
| Select identier _fthdt-qr.-\.-u -i avems B | O] Hexewl Bl Stuchres M| Enums &1 Imperis i Exports
Unda trd= -
B align 2oh -
fFunct Reda Cirle¥ \ text 100500081508B8520
7] = | text ODOMMOOISHABES2D ;
rif Export data Shift=E et SORNNNNIOLEOUEES 20
v . text :B0O0000ISBIERE2D w
Pl Code c . text:00000001SAREESI8 sub LEBAESSIE proc mear Hzembiy Insinucton 2 X
Fapl | text 10DOORA1EREE520 =
= . BN Duta o (= ooy
fla s text sMNNNSLIESAEE S0 cut
7] a G Snstvar.. AR+ L text -O0DDRROLEBAEES20 var_3 = qeird pte f Adkes 00l : Gx1500539520
B = aasedl . !
7] 5t F Saings v = :::—: :_: fousen [yor e, eax ~]
FAE -, Mumpad-" a = guerd pt 7
714 % Lindefne u et I BRIEE S0 arg @ = geerd Pt El Tt BN TSR
7 o | text :BOOGOOLSBAEESIY acg B = dmoed pre TR text: BE0000A1SH0BE512 align 26h
[l Remame M . text :BDEOREONSHABESIN arg 10 = quord pre 18h text:D000ReRLEMDEE52D 3
fln | tewt 1PDOONROISHREES 2 text; D000MNRLE0NEE520 loc_lBRRSESa: -4
fln Operand type v |+ text sO0M00LBMEE5 20 push rhx tenk ;NN S0 A5 20
7] i ; | text MO EMBES push rsd text: OH00M0R1S0EBRS2N wor i, ma
7] = | text:BEOO0O0LSMIBESD] push rdi text: BROINNDLEAEE51 retn
Segments v . text :00080081253BE524 sub rsp, 4k L text H0OARORIEANRRS D]
ﬁ A e 7 . text :O0000R1EMAEE52E way edl, adx
FiE | tet ORHNIGISHALE 524 w0 rbi, rex
7l = Functicns ¥ et M SMER 520 Rest edi,
7w T - T 1 fn: :n:n :.oz_ism:ssss;.
ea rsi, adbtain “obtain®
T Citier L Change werd.. — Jop short loc_16803554F
IJ v Pluging | Asscmble
E] Paacked bytes Crilwlt=P
Lirse 1210 & 5453 Apply patches 12 ingut fle.. : sub 1B008Y510 (Symenecnized wich Hex Yiew-1) v
=] cutpea O & x
Using FLIRT signature: Micersioft Visuslt v7/14 648i runtise
Propagatimg type fnforsaticm...
Function srgument informatlon has been propagated
The initisl sutcarslysiz has been finished, L
e
L il Dews Lizk: loccn

Cracking 2nd function in IDA pro

Now cracking the first function is also very easy, we just need to return always 1 value. Same
approach can be applied to it, instead of xoring we just need to move an immediate value 1 in the
eax register and return. But I’m demonstrating how a hacker and software cracker can add
harmful code in a cracked binary. So, | decided to do something extra with the first function. 1
looked at all the imports that this binary is using and | saw a message box import as well. | decided
to show a message box whenever this cracked binary is used. For using an API import there
are some requirements:

Must know the address of API import

Must calculate the offset of calling that API import

Must push all the parameters onto the stack frame

Avoid corrupting stack frames by equal pushing and poping

Must calculate offset for the string values used for parameters

Calculate opcodes for machine instructions because we must change bytes

ocoukrwdE

For calling any instruction, we need its opcode because we cannot directly assemble an instruction
in IDA freeware or pro because of its assembler limitations. There is a way to calculate opcodes
for every instruction, but | prefer doing smart way. | write the code in visual studio and
disassemble it to know its opcodes or for complex code | also write the code in assembly and
using MASM assembler | debug and find its opcode. This is a very simple example of just calling
a message box therefore | will write code in basic ¢ instead of assembly language.

int main()

{

48 55 push rbp

57 push rdi

48 31 EC ES 22 @2 @8 sub rsp,B8Egh

48 83D 6C 24 2@ lea rbp, [rsp+26h]

4% 8D @D 5C D6 @0 @0 lea rex, [BB32171F_Sourceficpp (@7FF74D411812h)]
E8 88 D9 FF FF call __CheckForDebuggerlustMyCode (@7FF74D481343h)

F/WinExec("cmd.exe fc echo ¥OU HAVE BEEN HACKED »> HACKED.txt", 1);

MessageBoxW(8, TEXT{ BEWARE")}, TEXT{ You Have Been Hacked!I!"), @);
DS 33 C9 xor rod, rod
8D 85 FB 64 B0 B8 lea r8,[string L"You Have Been H\x4088'@\0\@\.8"... (@7FF74D4@9ECEh)]
8 8D 15 E4 51 20 28 lea rdx, [string "BEWARE" (@7FF74D489BBoh)]
33 (9 xor BCX, 80X
FF 15 7C C7 @@ Be call gword ptr [imp MessageBoxW (@7FF74D41@158h)]
f/Ex1tProcess(@);
¥
33 (e xor gax,eax
48 3D AS C5 22 @2 20 lea rsp, [rbp+ecah]
5F pop rdi

Opcodes generated by visual studio debugger

In the screenshot above, all the opcodes needed for calling message box API are generated by the
visual studio debugger. We can get the idea of how to change bytes using this approach. I will
patch the first instruction that is xor r9d, r9d and the opcode for this instruction is 45 33 C9. This
is the first parameter for message box API and I’m passing it a value of 0 by xoring r9d register.

Tie €3z Jump 3earch Weew Decbugger Opnions Wedows Feip
AHE e AR S 3 s @O ES I X P D D ocalwindons e ~| e B
- N O OO Y U | O | Y | N UNENN | | ([EWIEOTUD T

Lerary frcson [l Regdr furcton [l batrucscn [0 Duts B Unexpicred | External symbol [Lumins function

(7] Fuesces 08 x B moavera B Hxvewt @ B s @ [. «
~1 FF EB 03 83 C8 FF 4% 88 BC 24 30 02 00 00 46 33 gé.7E9H . ’
Function naene 0 CC EB 94 20 @8 0@ 42 81 C4 2 00 00 41 SC SF Zéb..r‘."f.‘"' o0ice
[7] unkmown loaime 1275 SE SD 58 €3 €C CC CC CC CC CC C CC CC €C CC A [ARiTowes
7] sub_12005C 170 £9 4D FL P PP CCC c c cc C cC éxpyyR I
77 b, 18009C250 4053 48 83 €C n{Mu A2 30 F6 FF 48 83 gsfiod
- 30032683600 06 7531 98 oo ok Y
7] sub_18005C2C0 33 9 42 20 05 07 &C 10 e ‘I L. . B
7] sub_18009C240 4C 9C OF 2 48 B9 44 24 28 Columns * Ly
7] sub_18005CEC0 7C 51 16 90 02 00 80 00

O 74 49 48 88 05 5E 51 &
©0 48 85 D3 48 OF 45 C3
$9 @5 42 51 16 @@ E3 55 9

7] sub_18005CAE0
7] sub_18005¢030

[7] sub_ 120050080 16 00 43 €5 00 BF £7 16
18005017 00 03 £7 36 00 €8 44 25
@IML! L @5 48 38 05 10 51 16 60
sub_180050270 FF 48 88 0O 88 E7 16 @@ | S T
[7] sub_120030240 4c 80 @0 27 2A 11 ee Font... T soes Lext : OB000001 SNIODALE esp ¢siqueed_180200318, ©
| 7] sub_180050320 €8 £2 0F 11 4C 26 26 wrvTTr T T re—zed. e O — 0z short loc_18009081A
[7] sub_180050300 20 €6 27 CF 01 00 43 83 (4 30 58 €3 CC 132" HAAOIAL |0 o onnnoe01z0090AES zov rex, csiqword_18828C368
= 2 85 C9 74 ©6 (7 @2 05 00 09 00 33 (0 48 85 02 M.fe.C..... 300 |, " oaosaaarzaaanare rod. rod =
7] sub 120050320 ©2 85 92 40 BS (@ 74 03 41 59 00 4D 35 €9 74 de I agsus el x
(7] sub. 180050600 _‘; R :0 o ;; 45 B9 01 ;x 2 e Text: 0000001 8000045 2 lea rox, afrroristprevsl ;
o e e o 2x i = text : 00000001 S00P0AF) lea r8d, [r9s1]
7] sub_ 180050650 AR ff b Gl 3 0 text:0000000100IDAFD lea rdx, atat 3 TaT"
7] sub_ 180050640 S aRRY - | text:0000000150030804 mov [rspsishever_18), rax
| 7] sub_180050700 10 00 43 20 15 27 98 OF €0 45 33 C9 43 33 44 23 . g 000001 one> coll: . sub UMM
[7] AMTPretiaidateProductlic 588N CROT 86108, T 55 00 W0 €6 W0 Ba SR> 2ext 00000001 3009080€ =0y 3 :dword_180202C94, 2
L 2 vorre v £ et - o peto i e Text:0000000150090818 Sep short loc_18009087C
Py 5 48 80 DY €5 B8 93 FE FF 08 OS €6 41 3C F6 FP a3
o T {ocosczoe)1800$5AD8: AMTPreValidazeProductlicensesd (Synchreaized with I0A View-A) i
| B D& x
Usin‘s’ FLIRY signature: Microsoft VisuvalC v7/14 64bit runtime]

Propagating type informatica...
Functicn argusent fnforsatice has been propagated
The initisl autcanslysis has been finished. v

mc |
| NPT Diak: lo6g8

Patching instructions using opcodes in Hex-View

One thing of IDA pro or freeware is very good that it gives us live mapping of every instruction in
the Hex-format as well. Just click on the instruction you want to see in hex and change tab from
IDA view to Hex-view. | edited the bytes that were mapped on the instruction that | wanted to
change and saved the IDA image. In the 3rd section of this screenshot, you can see the instruction

has been changed to whatever we wanted. | will use same approach for patching other instructions
as well. For the second instruction | needed to create a string variable in the data section that must
be called in a register as second parameter. So, | found an empty buffer space in data section and
edited those empty bytes with the bytes that | wanted as my string. In the screenshot below you
will understand how to create variables.

SH e - B H 3 @S E WF v g X p D D locl windows debugoer ~ | %o & () B B

N --II--_-I--I--JI_-II- I e 1|

Lerary furcsen [l Reguar furcton [l Iatrucson 1 Dats [l Unexpiored | Extemal symbol [l Lumina function

A

7] Funcions 08 x T mivewa B T Hexvent Al Stuctres E e 8 tmparts # epets
Jata:000 5226E00 [T a

P 2 abevare;
at 2 zext TUTF-16LE7, 'BEARE" @

tat aYoulaveleentac: L !
t Sext "UTF-16LE. 'You Have Seen Hacked!!!' 0

Function name

12023 }Q:uzche tes X
021 j Address Ox180228F 20 ‘I R Sting baeral at 180226260 x
2agF] Fleotfset x20320 =

(7] AnTPrevidateProductiicense .
- : 92285 Crgnalvake 0000000200 00 00 0000 00 00 00 030000 00 Curenty: |unicode Catyle (16 i), UTF-16LE (deft)]
7] AMTGettibVersion e
7] AMTPhugPhagRequest 22094 A0S 2
7] AMTGetParentlEIDLicenseStatus 9228F3 Create:
7] AMTGetPy N 228F
'é‘ GetProductCleacSenialNumber - i_ e rkcode Catie (b
Pascal sty Pascal style (16 bits)
v Wide pascal Wide pascal (16 bits)
>
|00220320 ©000000182220720: .pdata:0000020180228720 (Synchronized vith Hex View Dektd Oelghi {16 bi) “
5] outpn Cstyle (3265) D & x
?rop:g.ﬂ&ns '.y;c Snforsaticn... Manage defadlts A
Functicn argusent inforsaticn has been propagated
The initial sutcanslysis has been finished. o Cancel Hebp
Kommand “MakeStriit™ failed Vi
o<

U; idle Dowm Disk: 10568

Creating variables for parameters to be used for Message Box

| created two variables at an empty buffer in the data segment of this binary. One of the variables
is used for text shown inside a message box and other variable is used for caption of the message
box. Creating these variables is very easy, just find an empty buffer address and change bytes from
the edit menu. As shown in the screenshot above, you can patch bytes and save the data that you
want to save which in this case is the hex of strings that | want to save. You must also keep in
mind the variable types being used here. Message box API uses wide strings therefore I’ve
converted my variable to the Unicode 16-bit style instead of Ascii that are 8-bits. The hotkey for
defining string literals is ALT + A.

I’ve defined the string variables, now the remaining task is to load these offset values in registers
used for passing parameters. For that | will provide a simple formula:

Offset = (callee_address - caller_address - instruction size)

My string text is on the address 180228EED which is callee_address. The address from which 1
want to call and save it in register is on the address 18009DAD9 and the instruction size is 7. Put
the values in the formula and we get the offset address that is 18B40D. From the opcodes generated
by the Visual studio, I know the opcode for lea starts with 48 8D, 15 is the register in which the
value must be moved and rest is the offset address in little Endian format. So, the complete opcode
for the instruction: lea rdx, offset:text is 48 8D 15 0D B4 18 00. | will save both strings in registers

by calculating their offset values and saving in registers using the LEA instruction as shown in the
screenshots below:

text:000080018800DAD ; =============== 5 UB RO UT I N E ==s====ss========sss========ss===========
text:eaeaeeel38090AD8

text:ea@aaaalieaiDADe

text:Be22800130889DA08 public AMTPrevValidateProductlLicense

text:B880080013000D4D8 AMTPreValidateProductlicense proc near ; DATA XREF: .rdata:off 1882814CE8lo
text:0008000130090ADS push rbx

text:B20280013009D4D2 sub rsp, 38h

text:B808880818889DAD6 xor rod, rod ; uType

. text :eeeeERR13RRADADY lea rdx, aYouHaveBeenHac ; lpText

text:Be00808136009DAER lea rg&, abBeware ; lpCaption

Instructions for loading offset value in registers

eeEEARA188A90A08 FF EB @3 B3 (8 FF 48 8B 8C 24 30 82 00 9@ 48 33 {&.fEYH(ESA. . .H3
eeEEEER138E90AA8 CC ES 9A 2D @B @9 43 81 (4 48 02 80 00 41 5C 5F I&3-..H.A@...A\
@PEEEEE1E089DAB® SE 5D 5B €3 CC CC CC CC CC CC €C CC CC C€C cC cC ~J[AIIIIIIiiiiii
BPPPEEE1EGEIDACE E9 4B FE FF FF CC CC CC CC CC CC CC CC €C CC €C &KpyyIIIIIiiiii]
jeceeenelzeeoDADe 48 53 48 83 EC 38 45 33 @SHFiBE3EH.
epoeceelseaoDAEe [AT_BD B5 F7 B3 18 B@]9@ 33 C9 FF 15 F@ 8A @F @8 L..:3...3Ey.35..
PREEEER1EABODAFe BS @1 OO 90 B0 99 99 99 99 90 90 90 90 98 90 98 |
AREAAER1EAA90EA 90 98 98 99 90 99 9B 9B 9B 90 99 98 90 98 98 98
AREAEAA1E5AA90E18 90 98 98 99 98 99 98 98 98 98 90 98 90 98 98 9B ese.-
eeEEEEA136E90E20 90 99 98 99 90 99 99 98 98 98 99 90 90 98 90 U8 e.eee.-
20000001230090E30 00 00 90 00 00 99 00 99 OO 99 90 98 90 90 98 I8
2EEEEER12060DE42 00 08 98 0P 00 99 00 98 OB 90 00 98 90 08 98 98
AEEAEEA120G0DE58 90 08 98 99 90 99 9B 99 OB 90 90 98 90 98 90 98

Opcodes for lea from offset value

The last parameter is also 0, so it is easy to assemble. Simply xor the register with itself and 0 will
be saved in that register. The last step is to call the message box API. The method for calling it
will be same. Need to calculate the offset value and call the API using the opcode for call
instruction. The offset that | calculated is OF8AFO0 and the opcode for call instruction is FF 15,
put it together and we can call the message box API using the opcode as shown in the screenshot
below:

@ mavewa B [T Hexviewt Al stuctures | B ewms 8 Imports B Epots
ext:000000013029DADR ; Exported entry 7. AMTPreValidateProductLicense
ext:8000280182890A02
lext :000000018009DADR ; ===s=sssszssss= S U B R O U T I N E sscascscsssssssessssssssssssssssscsssss
ext:000200013029DA02
lext :600000013009DAD0

lext :220208013029DAD8 public AMTPrevalidateProductiicense
ext:0000000180090AD@ AMTPreValidateProductLicense proc near ; Ov
lext :002000018089DADR push rbx
|ext:822e00018089DAD2 sub rsp, 3eh
ext:0000000130090A06 xor r9d, rod ; uType
|ext:0028080218029DADI lea rdx, aYouHaveBeenHac ; lpText
ext:000000013009DAER lea r8, aBeware ; lpCapticn
" lext:000000018009DAE7 nop
ext:020200013089DAES Xor ecx, ecx 3 hwnd
fext :000EEER1800IDAEA [Ccall cs:w 1
ext:000000018009DAFR mov eax, 1
ext:000000018089DAFS nop
ext:000000018009DAF6 nop
ext:820208018009DAFT nop
ext:000000018009DAF8 nop
ext:8e0808013009DAF9 nop
' lext:000000018009DAFA nop
ext:000000018009DAFE nop
" lext:0002080130@9DAFC nop
" lext:000000018089DAFD nop
|ext :020008018009DAFE nop
ext:@00000018089DAFF nop
000SCZZR 000000018009DAZR: AMIPreValidateProductlicense+lA (Syf” 201
<

Instruction patched for calling Windows API imports

Rest of the instructions that were in this function, I simply patched those with NOP instruction
which literally means no operation. After calling the Message box API, I’ve added crack as well
which in this case is to return value 1 whenever this function has been called. Then I patched the
binary file by applying patched from the edit menu and replaced the official binary with my version
of patched binary. Let’s see what happens when photoshop is opened.

File Edit Image Layes Type Select Filter View Window Help

Faatheri 0 pc vl Stie Nome

EEWARE

¥You Mave Been Hacked!!

17 H8 A AANPAS

D v 80 B 9 N 8 ¢ e Q IR

Cracked photoshop with included code execution

As shown in the screenshot and video above, cracked photoshop pops open a message box
whenever the application is launched. The alert says Beware, You have been hacked !!! This is
just for proving my point that any kind of code can be executed in the backend when a cracked
software is used.

Conclusion

Software piracy is very common these days. Even we as software consumers often prefer a cracked
software because it’s free of cost. However, using a cracked software could be very dangerous. As
I have shown in my article, how hackers can easily add malicious code inside a cracked software
that will be executed at the back end without user even noticing a thing. Like in this example, what
if 1 called a ShellExecute API or WinExec API or any other API used for creating processes? A
simple parameter to these APIs could download and execute another malware on the system
whenever this application is opened. You should avoid using cracked software and always go for
the premium product from a trusted official vendor.

