

Threat Researcher

Shayan Ahmed Khan
Sr. Threat Researcher

[LinkedIn]
[Medium]
[Github]
[Website]

https://www.linkedin.com/in/shayan-ahmed-khan-517168120/
https://medium.com/@shaddy43
https://github.com/shaddy43/MalwareAnalysisSeries
https://shaddy43.github.io/MalwareAnalysisSeries/

Contents
Technical Analysis of MedusaLocker Ransomware ..2

Mutex: ...2

Privilege Escalation: ..3

Defacement:...5

Persistence: ..6

Defense Evasion:...7

Service Stop:...8

Inhibit System Recovery: ...9

Encryption: ... 11

Discovery and Lateral Movement:.. 12

Threat Report: MedusaLocker Ransomware
In this analysis, we will not cover the stage1 and stage2 of MedusaLocker which includes initial
access using a maldoc and execution using a batch script that further calls a powershell to
initiate the attack. We will analyze the Ransomware executable only which is the stage3 of
medusa locker.

The MedusaLocker ransomware executable covers most of the MITRE ATT&CK tactics. The
MITRE mapping provided by a sandbox of public report is given below:

This variant of MedusaLocker ransomware has a large number of steps in its execution. It
follows a number of techniques from initial access to impact that we are going to explore one
by one below:

Mutex:
Let’s start with one of the most common techniques used by ransomware which is creating a
unique mutex to avoid running multiple instances of same malware. This is especially helpful in
case of the ransomware that have worm like capabilities and can propagate and infect other
systems. It is also helpful in case of a persistent malware that automatically starts execution
if a time or an event has been triggered.

Above code is disassembled from a stripped MedusaLocker ransomware executable. First
function is a simple print subroutine that says “[Locker] Is running”. However, the print is
disabled. Second function is the string format function called to format the unique mutex and
then it is passed to the 3rd function which Creates the mutex.

Privilege Escalation:
Before any critical operation, MedusaLocker tries to escalate privileges on the local system. It
does so by abusing COM objects to bypass UAC (User Account Control) which is a built-in
security measure. There is a known UAC bypass of CMSTPLUA COM interface.

This code above is escalating privileges using CMSTPLUA COM object interface. These CLSIDs
are referring to wshell exec object that is used to execute the command provided in the
screenshot above. Since this is a stripped binary therefore the functions don ’t make much
sense. However, if we rename the functions and parameters then it would be much easier to
understand as in screenshot provided below:

We just extracted a TTP from real world malware. The next step is to emulate this procedure
by recreating these malicious behaviors. Here for example, the behavior is mapped as a TTP
like:

1. Privilege Escalation as Tactic
a. Abuse Elevation Control Mechanism as Technique

i. Bypass User Account Control as sub-technique

Defacement:
One unique characteristic by MedusaLocker ransomware is that it adds a marker registry key
that shows that a particular system has been infected by MedusaLocker. The purpose of this
procedure is not known but it looks like a defacement strategy or just leaving a mark in the
system. Harmful or not, it’s an important behavior followed by a very dangerous ransomware.
Therefore, we emulated it.

The path for registry key is “HKEY_CURRENT_USER\SOFTWARE\MDSLK\Self”. The
abbreviation of MDSLK might be medusa locker. This tactic is mapped on MITRE as:

1. Impact as tactic
a. Defacement as technique

i. Internal Defacement as sub-technique

Persistence:
MedusaLocker uses a different way of achieving persistence. It uses official Microsoft
Documented Code for achieving persistence by scheduling a task with repetition of 15 minutes
indefinitely. Typically, malware uses either at.exe or schtasks.exe which are official Microsoft
apps for scheduling tasks, but in this case the malware scheduled task programmatically in
c++ using official code from MSDN page of Microsoft.

The malware creates a copy of itself with the name of “svhost.exe” in %APPDATA% of the
system and registers itself in task scheduler to be executed after every 15 minutes indefinitely.
Here comes the use of mutex, when its executed again, it first checks if another instance is
already running in the system. If it does, then malware exits and let the previous instance
continue. The MITRE mapping for this behavior would be:

1. Persistence as tactic
a. Scheduled Task/Job as technique

i. Scheduled Task as sub-technique

Defense Evasion:
There are multiple defense evasion techniques used by the malware, one of which is to disable
UAC (User Account Control) altogether. Since malware achieved elevated privileges using
CMSTPLUA bypass. Now it can make critical changes to the system, one of which is to disable
the UAC. It does so by changing registry values as shown in the code below:

It sets the value of “EnableLUA” to 0, which means the administrator prompt will not be shown
and everything would be executed with elevated privileges. The author of this malware tried
another extra step to disable UAC by setting the value of “ConsentPromptBehaviorAdmin” to
0 as well. By any chance, if the first didn’t work then the second technique would make sure
that UAC is disabled but it would only work after system restart. Their MITRE behavioral
mapping is as follow:

1. Defense Evasion as tactic
a. Impair Defenses as technique

i. Disable or modify tools as sub-technique

Service Stop:
Another highly critical impact this malware has is that it stops and deletes a set of pre-defined
services and processes to avoid any interruption for its encryption process. These sets of
services can be found in simple static analysis of strings from the binary.

Image above shows all the services and processes that it tries to enumerate and kills them off.
It uses Windows Service Control Manager APIs to interact with services to stop and even delete
the services. For processes, it uses famous process enumerator APIs
“CreateToolhelp32Snapshot, Process32First and Process32Next”. MITRE mapping for this
behavior is given below:

1. Impact for tactic
a. Service Stop for technique

Inhibit System Recovery:
Like most of the ransomware, MedusaLocker also tries to delete ways of recovering data from
the victim system. However, unlike most ransomware, it does so by deleting multiple recovery
options instead of just deleting shadow copies. It uses both vssadmin and wbadmin to delete
shadow copies from the system. It also deletes other recovery options using bcdedit.exe to
prevent the system from being rebooted into the recovery mode. As an additional step, it also
empties the recycle bin just to make sure.

Every single command listed above is executed by CreateProcessW API, which takes the first
whitespace as an indicator for process name and rest as an argument to that process.
Highlighted sub-routine named sub_41E9A0 creates these processes as follows:

The MITRE mapping for this malware behavior can be mapped on the Impact as follows:

1. Impact for tactic
a. Inhibit System Recovery for technique

Encryption:
Like most of the ransomware, MedusaLocker also uses symmetric encryption for fast
processing. It uses AES-256 for encrypting all files on the system. However, it uses a
combination of both RSA and AES in the malware process. The encryption key is encrypted
with the pre-defined public key embedded into the malware which could only be decrypted
with the attacker’s private key. The malware authors wrote code in such a way that every file
is encrypted with random generated AES key which is in turn encrypted using RSA public key
and saved on the system along with multiple ransom notes.

In the above screenshot, it can be seen that the a base64 encoded public key has been
embedded into the malware. We have extracted the strings from the malware using floss utility.
The base64 encoded key is then converted to binary format using “CryptStringToBinaryA”
API for use in cryptographic functions. Finally, the symmetric key is generated using
“CryptGenKey” API which is encrypted with public key and saved in the html ransom note.
After that the encryptor is started which establishes important folders and extensions to skip
during encryption as shown in the extracted strings just below the public key.

The MITRE mapping for this malware behavior can be mapped on the Impact as follows:

1. Impact for tactic
a. Data Encrypted for Impact as technique

To recreate this test-case, we can write a c++ code that starts an asynchronous thread for
encryptor function that constantly searches and encrypts the files. Meanwhile, also saving the
ransom html note that includes encrypted symmetric key in it.

Discovery and Lateral Movement:
The malware possesses a networking module that enables it to establish connections to
remote systems within the local network and scan for SMB shares. The initial step involves
sending an ICMP “Ping” to each system in a sequential order and verifying if a response is
received. After that, the malware will proceed to examine the system for any open SMB shares,
excluding shares with a “$” in their name, which indicates hidden shares. The malware w ill then
accumulate the remaining shares in a list, which will be encrypted at a later stage.

The MITRE mapping for this malware behavior can be mapped on the Impact as follows:

1. Lateral Movement for tactic
a. Remote Services as technique

i. SMB Shares as sub-technique

