

Shayan Ahmed Khan
Sr. Threat Researcher

[LinkedIn]
[Medium]
[Github]
[Website]

https://www.linkedin.com/in/shayan-ahmed-khan-517168120/
https://medium.com/@shaddy43
https://github.com/shaddy43/MalwareAnalysisSeries
https://shaddy43.github.io/MalwareAnalysisSeries/

Secrets of commercial RATs! NanoCore dissected

This article includes the technical analysis of a commercial RAT which is easily available on black

market for cheap price. NanoCore is a famous Remote Access Trojan malicious software that has

its own client builder and multiple delivery methods. In this article, I will not focus on the initial

delivery method which could be a malicious attachment or spear phishing. I will dive directly into

the first stage malware sample.

SHA256 Hash:

1605F0E74C7088B8A2CA7190B71C83F8DC0381E57D817DF3530BDA4AC5737511

Build: x86 and dotnet (multiple stages)

Category: RAT (Remote Access Trojan)

Family: NanoCore

Version: 1.2.20

Analysis Environment:

I use FlareVM as my base VM for malware analysis and detonation. I use REMnux Box Ubuntu

machine as DNS server and network simulator for the FlareVM.

1. https://github.com/mandiant/flare-vm

2. https://docs.remnux.org/install-distro/get-virtual-appliance

Tools:

• IDA Freeware

• Dnspy

• Inetsim

• Process hacker

• Procmon

• TcpView

• Wireshark

• HxD editor

• Cff-Explorer

• ResourceHacker

• Netcat

• DIE

• De4Dot

• Floss

• PE Studio

• ExeInfoPE

https://github.com/mandiant/flare-vm
https://docs.remnux.org/install-distro/get-virtual-appliance

STAGE 1:

Generic methodology that I follow for malware analysis is:

1. Basic Static Analysis

2. Basic Dynamic Analysis (initial detonation)

3. Advanced Static and Dynamic Analysis (TTP extraction)

Basic static analysis involves looking at interesting strings and API calls. I use floss utility for

string extraction process. It can also decode unicode strings and extract stack-based strings which

is helpful in some cases. For looking at interesting API calls, I use PE Studio as it also provides

red flags to potential malicious APIs.

Interesting strings & APIs:

• Software\Microsoft\Windows\CurrentVersion

• CreateProcessA, ShellExecuteA, RegSetValueExA, RegCreateKeyExA

The strings show that malware might be achieving persistence using Registry Run Keys technique

as it is also creating and setting registry keys using the APIs RegCreateKeyExA,

RegSetValueExA. It is also executing something, maybe a next stage payload? using the APIs of

CreateProcessA or ShellExecuteA.

Initial Detonation:

In the basic dynamic analysis, i detonate the malware in presence of Procmon for host- based

indicators and Wireshark for network-based indicators. The prcomon is setup in the detonation

FlareVM and the wireshark is setup at REMnux box which is simulating the network traffic using

inetsim.

Network Indicators:

1. Contacting malicious domain: stonecold.ddns.net

2. Multiple TCP packets sent after DNS query.

3. Creating socket connection on specified port: 2502

Network indicators wireshark packet capturing

Host-based Indicators:

1. Creates multiple files in %temp% folder

2. Extracts cmdkuqqy, cckgcf.exe and ka9zcqw3l6l48a1uuba

Host-based indicators procmon logs

It looks like stage1 malware is extracting 3 files from its resources. The second stage malware is

then executed with the file passed as parameter. I have checked the process tree of malware and it

shows that the original sample extracted the 2nd stage malware files in %temp% and executed it

as shown in the picture below:

Process Tree

STAGE 2:

The second stage malware is cckgcf.exe which makes use of encrypted files cmdkuqqy and

ka9zcqw3l6l48a1uuba for further malware execution. From the process tree above, it is visible

that second stage sample (cckgcf.exe) launches another process of itself. This is common

behavior in malware which employs defense evasion techniques to deobfuscated/decrypt

payloads at run-time.

The indicators for stage2 malware are as follow:

1. Starts itself as child process

2. Keeps sending SYN packets to the remote C2 server on port 2502

3. Creates a dat file (run.dat) in %Appdata% folder

4. Creates persistence of itself by using Registry Run keys procedure.

Network indicators stage2

Host indicators stage2

Advanced Static Analysis:

I use advanced static analysis by looking at the assembly of malware in IDA freeware. From the

initial analysis, it looks like the stage2 malware accepts a cmdline argument for execution. If the

argument is passed, then it processes further, else it exits.

IDA freeware stage2 malware analysis

All the API calls in stage2 malware are resolved dynamically, so static analysis doesn’t help here.

Therefore, I’ve started advance dynamic analysis. I use IDA local debugger for advance dynamic

analysis.

Advanced Dynamic Analysis:

Advanced dynamic analysis revealed that, there are multiple modules that are loaded into the

stage2 malware which are not added by default. The libraries like shlwapi.dll and wininet.dll are

included at run-time. The API calls are all obfuscated and resolved at run-time to avoid detection

by anti-malware systems. The combination of LoadLibraryA and GetProcAddress is used to

achieve dynamic API resolution.

Dynamic API resolution stage2

I resolved the API calls while debugging malware and located the shellcode that is being

decrypted and then injected into the process space of malware itself. The shellcode is another

portable executable binary bytes that are executed in a separate thread. The starting bytes of 4D

5A (MZ) are the identifier of a portable executable which is shown in the screenshot below:

Shellcode injection stage2

The process injection technique that is being used is called process hollowing, in which a process

is started in a suspended state which in this case is malware itself. Then a memory is allocated in

the suspended process and shellcode is written into that memory. Finally the address of image base

is changed to the starting address of shellcode and process is resumed from suspended state. Now

it will start it’s execution from the injected shellcode.

To verify memory related modification, I use process hacker which is an excellent resource to

monitor the processes. Injected bytes could be found easily by looking at the memory protections

of running process. For injection, a memory protection with permission of all READ, WRITE and

EXECUTE are required, therefore I look for RWX memory protections which shows the injected

memory bytes in a process. In the screenshot, the injected bytes are shown which are equal to the

ones that I have debugged using IDA.

Shellcode Injection memory view stage2

One cool feature of process hacker is that we can directly dump shellcode from the memory to a

file and since in this case, the shellcode is a whole portable executable and not a position

independent shellcode therefore, I could analyze it separately as a next stage3 malware.

Another indicator of stage2 malware is that is persists itself by registry keys. The stage2 malware

creates persistence by adding a registry key value to a binary named: ratotpvvsmo.exe in the

%Appdata% folder called gswccl.

Persistence stage2

STAGE 3:

Stage3 malware that was Portable executable shellcode injected into the process space of stage2

malware is another resource extractor stage. It just repeats the cycle, extract and decode shellcode

bytes from its resources and injects in itself again. This process just adds another layer of defense

evasion technique.

Resource extraction stage3

Process injection stage3

I located the shellcode again while debugging and extracting it out using process hacker.

• To locate the shellcode in the memory, I analyzed the registers and found the handle to the

shellcode memory

• From then on, I only had to find the length of shellcode to copy from hex

• I used the value returned by API SizeofResource to calculate the size of shellcode as shown

in the register eax which is 32A00

• Next part is simple, I just added the value to the address space where the shellcode is

starting

Shellcode size stage4

Shellcode address stage4

I dumped the shellcode from IDA freeware hex view in a binary file. It is another portable

executable which could be labelled as stage4 or final stage malware.

However, extracting shellcode from resources using IDA freeware sometimes causes unknown

problems, like the configurations are not being decrypted into the final stage payload. So, I used

Resource hacker tool to dump the last stage malware and started analyzing it.

STAGE 4: NanoCore v1.2.2.0

Final stage malware is a dotNet build binary. It is a NanoCore Client binary of version v1.2.2.0

which is highly obfuscated. I used ExeInfoPE to identify the obfuscation. Eazfuscator has been

used to obfuscate the final stage dotent malware. Luckily there are open-source deobfuscators

available for this type of obfuscation.

Final stage obfuscated malware

Similar to all RATs, NanoCore extracts its configuration file and adjust its settings to the specified

configuration. It extracts the configurations and extra malware plugins from the resources. The

resource is encrypted for defense evasion purposes.

Malicious resource extraction

It reads first 4 bytes of this encrypted resource and gets size of decryption key in those 4 bytes

from the encrypted resource. It also creates a GUID of the executing malicious PE binary and

initiates a decryption routine to decrypt the key that is used to encrypt rest of the resource.

For example, the first 4 bytes are 10 00 00 00 (0x00000010), which in decimal means the value is

16 and that means the encrypted key is next 16 bytes in the encrypted resource. The parameters

that are passed to decryption routine are:

• 16 bytes encrypted key

• GUID of itself

Stage4 decryption routine

Stage4 key decryption

The HxD editor is displayed for easy understanding of how this decryption routine works. In the

screenshot above, it is shown that first 4 bytes provides the length of encrypted key bytes that are

highlighted. Those key bytes are decrypted using Rijndael decyptor and the key for decrypting

these bytes is the GUID of malware stage4 binary.

Next, we get the 8-byte decrypted key for DES encryptor, which is the key used to decrypt rest

of the resource. So, the malware uses GUID of itself to decrypt the first 16 bytes (with rijndael)

and use the decrypted 8 bytes as key and salt for DES encryption algorithm to decrypt rest of

resource. As shown in the screenshot below: it will initiate encryptor and decryptor of DES using

the decrypted bytes from the resource file.

Decrypted key stage4

It continues by reading the next 4 bytes and again take it as a parameter of length for reading next

number of bytes for DES decryption routine. Next 4 bytes are 15D08 which is equivalent to 89352

number of bytes. Means it is then reading to the end of encrypted resource file.

Resource decryption stage4

Finally, we get the decrypted config file for NanoCore RAT. All the configuration setting are

provided below:

There are two dlls that have also been decrypted, that are:

• ClientPlugin

• SurveillanceExClientPlugin

Decrypted resource is divided into two arrays:

• 1st array holds the decrypted binaries (dlls)

• 2nd array holds the configuration settings

Configuration settings:

• BuildTime: {3/23/2022 12:26:29 AM}

• Version: {1.2.2.0}

• Mutex: {639f1c3f-4bc5–44fa-9234–8471b84f363c}

• DefaultGroup: EDGE

• PrimaryConnectionHost: stonecold.ddns.net

• BackupConnectionHost: stonecold.ddns.net

• ConnectionPort: 0x09C6

• RunOnStartup: false

• RequestElevation: false

• BypassUserAccountControl: false

• ClearZoneIdentifier: true

• ClearAccessControl: false

• SetCriticalProcess: false

• PreventSystemSleep: true

• ActivateAwayMode: false

• EnableDebugMode: false

• RunDelay: 0x00000000

• ConnectionDelay: 0x00000FA0

• RestartDelay:0x00001388

• TimeoutInterval: 0x00001388

• KeepAliveTimeout: 0x00007530

• MutexTimeout: 0x00001388

• LanTimeout: 0x000009C4

• WanTimeout: 0x00001F40

• BufferSize: 0x0000FFFF

• MaxPacketSize: 0x00A00000

• GCThreshold: 0x00A00000

• UseCustomDnsServer: true

• PrimaryDnsServer: 8.8.8.8

• BackupDnsServer: 8.8.4.4

Decrypted RAT configuration

The malware adjusts its settings based on the configuration file above and then performs a series

of steps as provided in RAT configuration. It then moves on to create mutex, queries the machine

GUID from registries and create a folder in %appdata% with machine GUID value. This folder is

the main working directory of malware.

NanoCore working directory

One of the indicators that I found above, which is the creation of a “run.dat” file in the system is

achieved in the next method. It gets current DateTime and save those values as bytes in Run.dat

file. This might be used as an indicator for when the infection started in the particular system. Also,

I am assuming the value of run.dat is being sent as heartbeat packet to the c2 server.

Indicator of NanoCore

Malware is totally dynamic. It sets up most of the strings at run-time for the malicious files. It

combines different strings dynamically to avoid detection. The malware has pre-defined values in

its structures based on the LOL bins (living of the land binaries) names and paths. It combines

these values at run-time and sets up its malicious files and processes masquerading as windows

native binaries.

LOL bins masquerading

In the screenshot above, it is visible that the malware picked DNS Monitor and dnsmon.exe from

the structures that are available. Next time it could pick NTFS Manager and ntfsmgr.exe as the

next target.

In this sample, the RAT doesn’t have everything enabled in its configuration. Therefore, it skips

most of the really critical steps:

• RunOnStartup: false

• RequestElevation: false

• BypassUserAccountControl: false

• ClearZoneIdentifier: true

• ClearAccessControl: false

• SetCriticalProcess: false

• PreventSystemSleep: true

• ActivateAwayMode: false

• EnableDebugMode: false

All of the above-mentioned steps are being skipped as I further debug the malware. I later patched

the malware to execute these steps as well for TTP extraction process, which i will discuss later

on.

I debugged the code further. There were so many dynamic changes, like setting variable values,

setting the plugins, setting Client Connection values, The connection IPs, the timeout values and

much more. Finally, it was able to configure all settings and resolve the C2 server. The Domain

name and the port number are being resolved to create the connection. Port number is 2502 and

C2 server is stonecold.ddns.net.

Resolving c2 server

Creates and establishes asyn sockets for the connection. Since all the code is dynamic therefore

the values are being received from different methods. Then it forwards the program to

asynchronously send heartbeat messages to the c2 server again and again until the connection is

created. The c2 server is down, therefore the malware doesn’t move forward with its execution.

Using the internet simulator, we can fool the malware by showing c2 server as live, but it has some

sort of authentication mechanism in place and waits for sever response to create socket. I used

netcat to listen on the specified port and it keeps sending heartbeat packets as shown:

Async sockets

Netcat listening on malicious port

So C2 server is basically a DuckDNS domain. Duck DNS is a free Dynamic DNS service that

associates domain names with changing IP addresses, primarily used for legitimate purposes like

remote access to devices. However, malicious actors can exploit it for command and control (C2)

in malware. They do this to hide the C2 server’s location, maintain anonymity, evade detection,

and quickly adapt to takedowns.

TTP Extraction

My work is related to TTP extraction and recreation process after the initial analysis. The project

that i am working on is Breach and attack simulation and my job is to enrich its threat library

with latest malware recreated in a safe exploitation manner for security testing.

From NanoCore i have identified these TTPs in my initial analysis:

1. Defense Evasion: Obfuscated Files or Information: Embedded Payloads

2. Defense Evasion: Obfuscated Files or Information: Dynamic API Resolution

3. Defense Evasion: Process Injection: Process Hollowing

4. Persistence: Boot or Logon Autostart Execution: Registry Run keys/startup folder

5. Defense Evasion: Hide Artifacts: Resource Forking

6. Defense Evasion: Subvert Trust Controls: Mark-of-the-web Bypass

7. Privilege Escalation: Scheduled Task/Job: Scheduled Task

8. Defense Evasion: Files and Directory Permissions Modifications: Windows File and

Directory Permissions Modifications

9. Defense Evasion: Masquerading: Masquerade Task or Service

10. Defense Evasion: Hide Artifacts: Hidden Window

11. Command and Control: Non-Application Layer Protocol

12. Collection: Input Capture: Keylogging

13. Collection: Clipboard Data

14. Collection: Automated Collection

15. Exfiltration: Exfiltration over C2 channel

NanoCore SurveillanceExClientPlugin

Another dynamic link library that has been decrypted from the resources and being used for spying

on victim is called the SurveillanceExClientPlugin. I dumped this module separately for static

analysis and found very exciting and organized malicious code used for spying and logging user’s

activity.

The SurveillaneExClientPlugin does following:

• Extracts further resources: Lzma and TLD, first one is a custom Lzma compression

plugin and the other one is Undefined

• Process Hollowing: There is a whole section of process hollowing code inside surveillance

plugin

• Keylogging: Organized code for recording all types of data, including keys, clipboards,

dns records etc

• C&C: Executes basic commands like enabling/disabling keylogging, application logging,

dnslogging, get logs, delete logs, export or view logs.

• Exfiltration: Recorded logs are exfiltrated over to different hosts defined by malware

dynamically

I have recreated most of the keylogging code used by NanoCore. It is registering a RAW input

device and receives RAW input data, then maps those RAW inputs to unicode characters and logs

it in a .dat file. A chunk of the simplified code is uploaded alongside this report.

Similarly, the DNS records are being logged by using the API of DNSGetCacheDataTable. I’ve

created multiple test cases for each TTP listed above. However, for security purposes and to avoid

the abuse of my code, I will not post it publicly.

In conclusion, the detailed analysis of the NanoCore Remote Access Trojan (RAT) underscores

the evolving sophistication of malicious tools in the digital landscape. NanoCore RAT’s

multifaceted capabilities, including remote control, keylogging, file manipulation, and data

exfiltration, make it a potent threat to both individuals and organizations. However, traditional

signature-based detection methods often fall short in identifying such polymorphic malware due

to its ability to quickly morph and evade detection.

This analysis emphasizes the urgent need for behavioral detection mechanisms in modern

cybersecurity strategies. Behavioral detection, powered by machine learning and artificial

intelligence, focuses on identifying patterns of behavior rather than relying solely on known

signatures. This approach enables security systems to adapt and recognize novel threats like

NanoCore RAT, even as they evolve to avoid traditional defenses. By continually monitoring and

analyzing system behavior, security solutions equipped with behavioral detection can provide a

proactive defense, offering a crucial layer of protection against emerging threats that traditional

methods may miss. As cyber adversaries continue to innovate, embracing behavioral detection

becomes imperative to stay one step ahead and safeguard digital assets effectively.

